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Abstract—Deep neural network training often involves stochas-
tic optimization, meaning each run will produce a different
model. This implies that hyperparameters of the training process,
such as the random seed itself, can potentially have significant
influence on the variability in the trained models. Measuring
model quality by summary statistics, such as test accuracy, can
obscure this dependence. We propose a robust hypothesis testing
framework and a novel summary statistic, the a-trimming level,
to measure model similarity. Applying hypothesis testing directly
with the a-trimming level is challenging because we cannot
accurately describe the distribution under the null hypothesis.
Our framework addresses this issue by determining how closely
an approximate distribution resembles the expected distribution
of a group of individually trained models and using this approx-
imation as our reference. We then use the a-trimming level to
suggest how many training runs should be sampled to ensure
that an ensemble is a reliable representative of the true model
performance. We also show how to use the a-trimming level to
measure model variability and demonstrate experimentally that
it is more expressive than performance metrics like validation
accuracy, churn, or expected calibration error when taken alone.
An application of fine-tuning over random seed in transfer
learning illustrates the advantage of our new metric.

Index Terms—DNN variability, non-parametric
Kolmogorov-Smirnov test, robust statistics, ensembling

testing,

I. INTRODUCTION

Deep learning models have achieved state-of-the-art per-
formance on complex tasks in healthcare, education, cyber-
security, and other critical domains. Training these models
takes significant time, energy, and hence financial resources.
Training algorithms use stochastic optimization for non-
convex objectives, meaning that models produced by different
training runs, in general, converge to different solutions. It is
clear that these trained models correspond to distinct functions,
but is this a distinction without a difference? Models with a
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similar objective value and validation/test accuracy may still
differ significantly.

In practice, models are often retrained as new data arrives.
This necessitates algorithmic and architectural changes in
state-of-the-art models to improve their performance on new
data. The run-to-run variability in training models makes it
difficult to conclude if a specific initialization or hyperparam-
eter made a meaningful difference in model performance or
if it just “got lucky” due to the presence of randomness in
the optimization. Without this knowledge, comparing training
configurations to assess relative quality becomes difficult.

We consider a stylized model of a machine learning train-
ing process. A practitioner trains M models in an identical
manner, using fresh randomness for each training run, but
they must output only a single model (due to computational
constraints in deployment, perhaps). If test accuracy is the
criterion they use, then they may have many models with
nearly the same test accuracy. This work proposes a new
framework to measure how representative a given model is
of the training process.

Gundersen et al. [1]] provided a taxonomy of barriers to
reproducibility in machine learning practice: they identified
randomness in model initialization, batch shuffling during
mini-batch stochastic gradient descent (SGD), and data sam-
pling as major sources of variability during training. There are
two sources of randomness in this framing of the problem:
the sampling randomness of the test data, and the randomness
from the stochastic optimization. The latter is under the control
of the pracitioner. The importance of using random seeds as
part of hyperparameter tuning in deep neural network (DNN)
training has been previously highlighted in the literature [2]-
[6]: these works found the effect of random seed on model
performance to be statistically significant. Other works have
focused on understanding the random seed effect on specific
sources of randomness in training. For example, Fort et al. [7]
found that initialization has a larger effect than batch order
in SGD on model performance, while Bouthillier et al. [§]]
showed the opposite. Summers and Dinneen [9], and Jor-
dan [[10] show that networks converge to vastly different values
even with the change of a single bit of network parameters
during initialization. While studying run-to-run variability in
pre-trained BERT models over different random seeds, Dodge
et al. [11] noted a validation performance gain of 7% over pre-
viously reported results, highlighting the importance of fine-
tuning over the random seed. All the above-mentioned works
have assessed the impact randomness has on the validation
accuracy, or churn [|12]] between models, which quantifies how



Fig. 1. Hypothetical decision boundaries corresponding to two models
with the same accuracy. The shaded regions represent the underlying data
distribution.

two models differ in their predictions on the same test point.
These summary statistics only focus on the decisions made
by predictive (classification) models and do not directly assess
differences in the functions learned by these models.

In this paper, we assess DNN training variability over
random seeds using the network outputs used to make the
decision. Figure [I] illustrates the difference: the solid and
dashed lines represent two decision boundaries between red
(circle) and blue (cross). Accuracy measures incorrect deci-
sions, and the churn is determined by the region between the
two curves. If we think of the training algorithm as generating
a random sample from a function space, we can use other
tools to understand model variability. As a first step, we can
examine the distribution of the pre-thresholded outputs (the
logit gap) from functions learned by different runs of a fixed
DNN architecture. To that end, we adopt a non-parametric
hypothesis testing framework to measure the similarity of
functions learned by DNN models that vary in random seeds.

II. PROBLEM SETUP

Notation: For a positive integer n, let [n] = {1,2,...,n}. Let
1(.) denote the indicator function, such that 1(z <t) =1 if
z < t, and 0 otherwise. Random variables will be denoted in
boldface, with realizations being non-bolded, so 6 is a random
variable and 6 is a realization. We consider training a DNN
for predicting an output taking values in a set Z with input
from a (feature vector) = taking values in a space X. A DNN
with a given architecture is specified by a set of parameters
(e.g. the weights) 0 taking values in parameter space, ©.

A. The learning task

We will restrict attention to binary classification using a
DNN with parameters 6. Given a label space ), a training
algorithm takes a training set, Diain = {(xi,9:) € X X
Y: i € [Nirain]}» estimates the weights 6 that (approximately)
minimize the empirical loss R(Q; Dirain) Over the training data,
and assigns a label y € ) using a softmax operation. We model
this by assuming the DNN takes an input x and computes
functions m™* (x | #) and m™(x | 0), with the predicted label
§(x;0) being +1if m*(z | 0) > m™ (x| §) and —1 otherwise.
A Bayesian interpretation of this rule assumes the data is
generated according to an (unknown) distribution 7 (x, y), with
a likelihood function 7(z|y), and a uniform prior Unif[}].
The functions m™(x | #) and m~(x | 9) for the positive and

negative classes can be converted into posterior probability
estimates:

exp(m™* (x| 0))
exp(m*(x | 0)) + exp(m~ (x| )
2= exp(m™(z]0)

exp(m™ (x| 0)) + exp(m=(x | 0))
The prediction function is then the maximum a posteriori
(MAP) estimate:

x) =

Ty=1] )

Fy=-1] 2)

§la;0) =sgn(t(y = 1] z) —#(y = —1| z))
=sgn(m®(z|0) —m (z|0)). 3)

We can then assume the learned function is m(xz;6) = m™(z |
0) — m~(z | 6) which is an approximation to the (un-
known) log-likelihood ratio log % We therefore refer
to m™(z | #) and m™ (z | 0) as logits and m(x;0) as the logit
gap. In our setting, for a given 6 € O, the network computes
the function m(x; #) (logit gap function), and the DNN defines
a family of functions M = {m(z;6) : ¥ — Z:6 € O}.
The goal of ftraining a DNN is to find a “good” setting for
the parameters 6 or, equivalently, to find a “good” function
m e M.

Almost all DNN training algorithms use stochastic opti-
mization, making them approximate in two ways. First, they
will generally converge to a local minimum because the risk
minimization problem is non-convex. Second, randomization
means the estimated parameters 6 are random variables. Two
runs of the same training algorithm on the same training set
Dirain can produce different functions. One natural question
is to ask how different these functions are. We can try to
answer this using a fest set, Diest = {(2;,9;): J € [Nest]}-
If we assume D;s i1s drawn i.i.d. from the data distribution
m, then given a trained model m(z;6), the set of values
{m(z;;0): j € [Niest)} is also an iid. sample from a
distribution on R induced by 7.

B. Trained models and reference functions

Dtest = {m17 T2,... 7mNLes‘}

test set .%.

(pseudo-)random seeds

i parameters
[4 m(z;;0
P —l)i m(z | 61) Hevaluate'u)
Y, [% m(z ;0
d )I m(z | 02) Hevaluate'u)
= | |_ °
= S ® °
training ® °
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d-b —M)I m(z | Onr) H'evaluate'M)
training trained models logit gaps
process

Fig. 2. The experiment design. Randomness is used within the training
algorithm for initialization and batch selection. We train (or fine-tune) M
models independently using the same training data. Each model is then
evaluated on the test set. The resulting values are used to form empirical
CDFs.

We consider the experiment shown in Figure [2} we train M/
models independently by varying the random seed and using



the same training set. We then evaluate the corresponding
models on the test set. Let 7 be the distribution of @ cor-
responding to the randomness in the training algorithm run on
data set Dyrain. Then Dparam = {61,602, ...,0a} is sampled
i.i.d. ~ 7. Let P be the set of cumulative distribution functions
(CDFs) on R. Given a fixed DNN architecture, the training
set Dirain, and a stochastic training algorithm, the M i.i.d.
samples of parameters induce M i.i.d. samples of functions
{m(z;0y) : k € [M]}, taking values in M.

Given a realization of a parameter 6;, and x ~ 7, we define
the CDF of the model m(x;6y) by

Gi(t) = Eqjg, [1(m(x; 01) < 1)] @)

Now, suppose 8 ~ 7 and x ~ 7 are drawn independently. The
expected CDF over both is

FTXW(t) = ETXTF[]]-(m(X; 0) < t)] &)

Since we do not know 7 X 7, we can consider an ap-
proximate empirical version of F ., by conditioning @ on
the sampled parameters Dparam. The result is the following
function:

M
Fﬂ—l’Dparam (t) = 7T|Dparam Z ]]. X ek < t)
k:l

M
1
M ZEwlemm[ﬂ(m(X; 0r) < 1),
k 1

7ZE7T|91¢

by the linearity of expectation. Note that the terms inside the
sum are the CDFs in (@).

m(x;0) < t)], (6)

C. Empirical CDFs, reference functions, and ensembles

We can only access data distribution 7 through samples
from Diest. In our subsequent hypothesis tests, we will use
empirical cumulative distribution functions (eCDFs) in the test
statistics. Given N samples from 7 we can compute the eCDF
for a model with parameter 6y,

NZ

We can average the eCDFs from M models to form what we
call the reference function

N
G(t) MZ %Z]l m(z;,0,) < t) |. (8)

= j=1

m(z;;0) < t). )

In our framework, we will also consider ensemble models
in which we average the logit gaps. If we take a subset

(01,05, ...,0) ) of My models from our M models, the
corresponding ensemble is
1 Mens
m(z;) = 77 m(z;, 0r)- ©)
ens k=1

The eCDF of this ensemble model is

(10)

We are interested in testing whether a new model with
parameter 6, is close to the expected model from the train-
ing process. We formulate this using hypothesis tests that
compare G corresponding to 6y as defined in @) with the
average in Fw\me,,,~ By switching on or off different uses
of randomization in training, we induce different distributions
T on the parameters. For example, we can use deterministic
initialization or fixed batch ordering. Under these scenarios,
we can generate M/ models and analyze the variability of these
models using the reference function (§)), which captures the
consensus of the collection of trained models.

Remark 1: While we have described the problem in this
section for binary classifiers and the logit gap, note that this
formulation can be used for any machine learning model by
taking a single scalar measurement function m: X x © — R
applied to Dy . For binary classifiers, the logit gap is a natural
choice and makes the comparison to the validation accuracy
more interpretable.

III. ROBUST AND NON-PARAMETRIC TESTING

Ideally, we want to estimate the variability of trained models
by measuring the discrepancy between a candidate model, Gy,
and the expected CDF F . defined in (5). Without access to
7 %X 7, we instead consider the CDF, Fﬂppmm, averaged over
Dparam as defined in (6). We formulate this as a a one-sided
hypothesis test: the null hypothesis is that G is the same as
Fr

[Dparam*

A. Classical one- and two-sample KS tests

We can use non-parametric hypothesis testing to formulate
the comparison between Gg and Fy|p,...... Given N samples,
{z; [N]} ~ m, we can compute the logit gaps,
{m(z;;60): j € [N]}. The null hypothesis for the one-sided
test is

HESL: {m(ay;00): j € (1)

That is, is the candidate, Go, the same as Fyp, .7 The
classical Kolmogorov-Smirnov (KS) test uses the eCDF, Go,
defined in (7) to compute the test | Dparam — Gollso-

The KS test statistic cannot be evaluated without a closed-
form expression for Fﬂppmm. However, we can still employ

a two-sample KS test, which leads us to the null hypothesis

INT} ~ FriDyam-

HES?: Go = Frpp (12)

param *

Unfortunately, this hypothesis also relies on explicit knowl-
edge of Fﬂmmm_m To get around this, we propose using G
as a proxy for Frp,,...- In this case we draw 2N samples
{z; : j € [2N]} ~ 7 and use half to compute the reference
function G: in and half to compute G and use the test
statistic |G — Go||so. The following result shows that G is a
reasonable proxy for Fp

param °*



Theorem 1: Let G and Fr|Dparan b given by (8) and (6).
Then for any d;, > 0,

Pﬂ\Dpamm (

where €, = 2M exp(—2N6?).

The proof is in Section [A]of the Appendix and follows from
the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [13]] and a
union bound over {6;}.

We can use the two-sample DKW inequality [[14] to set a
threshold for the test. The DKW inequality shows that

F. e (13)

|Dparam

‘OO > 5b) < €,

P |Dparam (HGo -G (14)

> 5a) < €,
oo

where ¢, = C exp(—N62). Given a target ¢, we can set the
threshold for the test as

/1. C
=4/ —=1In—.
a N nea

Here C = e for general N and for N > 458 we can take
C = 2 [14] Theorem 1]. Using the the triangle inequality, we
have the following corollary.

Corollary 1: Under the assumptions of Theorem [I] for any
dq > 0, dp > 0 and sample size N > 458, we have

PrDpram (‘ Fr1Dpuram — CA*'OH <o + 5b)
>1—2M exp (—2N6}) — 2exp(—N32). (16)

15)

Provided we have enough samples, we can set thresholds
for this test to achieve a guaranteed false alarm (type I error)
probability. However, in large sample settings, the KS-test
often rejects the null because even small changes in the sample
can result in a significant shift in the L.,-norm [15 p.245].

B. Robust statistics and trimming

Modern machine learning models are complex and often
have many more parameters than training points. Even if we
use a very large number of models, M, to compute G and
estimate F’,,‘mem, we may not have a good approximation to
the expected CDF, F . We want to represent this epistemic
uncertainty and alleviate the over-sensitivity of the KS test in a
more structured way. We can capture some of this uncertainty
in the null hypothesis by replacing the null hypothesis with
a composite hypothesis: this is the approach taken in robust
statistics [16].

We describe the approach for general distributions and later
specialize it to our setting. Consider a given distribution Py
and define a new null hypothesis as a set of distributions close
to Py. Given a metric or divergence d(-,-), radius «, and
distribution Py, define the d-ball of radius « by B4(Py, o) =
{P € P :d(P,P) < a}. While we could take d(-,-) to
be any metric or divergence between probability distributions,
the classical approach in robust statistics [[16]] uses an L ball
corresponding to a contamination neighborhood

Bi(Py.a) ={P:P=(1—a)Py+aQ, Qe P}. (17)

The interpretation is that up to an a-fraction of samples may
come from an unknown “outlier” distribution Q).

In this paper, we use the L; ball not only because it is the
default in robust statistics but also because of the connection
to impartial trimming |17]]. Given a distribution P; € P and
a scalar « € [0, 1], the set of a-trimmings of P; is defined by,

P P
B N eT:
dPl_(l—a)aS}’( )

where P < P; denotes that P is absolutely continuous with
respect to P; [18]. Trimmings are related to contamination
neighborhoods [19]:

Ra(Pl){PGPZP<<P1,

P, e Bl(Pg,a) & Py e Ra(Pl), (19)

A recent work by del Barrio, Inouzhe, and Matrén [20] for-
mulated a robust hypothesis test using the connection between
contamination and trimming. Given a sample generated from
an unknown distribution P, their null hypothesisﬂ is:

HEM: P e Bi(Py,a), (20)

where P, is a known distribution. Because of the connection
to a-trimming in (I9), this hypothesis is equivalent to stating
Py € Ro(P). They, therefore, take the following as their null
hypothesis:

HEM . inf

@

| Py — Pl = 0. 1)
P)

Given a sample of IV points and its empirical eCDF Pw, they
propose the test statistic:

T(Py)= _ inf [Py — Pl (22)

PeR4(Pn)

This test statistic involves finding the closest L., approxi-
mation to Fy in the set of a-trimmings of the eCDF Py.
This change is important because test statistics using the
contamination-based null in (20) could entail an optimiza-
tion over the L; ball By(Py,«), which would be infinite
dimensional problem, wheras optimization over the set of -
trimmings in (22) is a finite dimensional problem.

Computing the optimizer of (22) in the set of trimmings of
Py involves finding a reweighting of the samples such that
downplaying the importance of a small fraction of contam-
inated samples (from the test set) would allow a KS-test to
not reject the null hypothesis. We point the readers to Section
and in the Appendix for a detailed description.

C. A new robust two-sample test

To apply the trimming-based approach in our problem, we
could take Py = Fﬂppmm and test using the eCDF Py =Gy
computed from N samples. Because Fip_, ... is not known,
we cannot compute the test statistic in @]) In what follows,
we assume that the support S of the distributions is boundecﬂ
with length |S|: this assumption will let us set the threshold
in our test.

IThe superscript is the initials of del Barrio, Inouzhe, and Matran [20].

2While logit gaps can in general take any values in (—oo, 00), in practice,
logit gaps of well-trained models are not too large. Large logit gaps would
indicate a poorly calibrated model or the model being overconfident in one
class. In our experiments we clip the logit gaps.
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Fig. 3. Illustration of the parameters in the trimming-based two-sample test.
The null hypothesis uses the L1-contamination ball, B1 (¥ Dy, .0 » ¥)- The
test will accept if the Loo distance between Fip ... and the set of o-

trimmings of Go, Ra (Go), is small.

We propose using the following null hypothesis in a two-
sample test:

Ho: Gy € By (FﬂDparam’ l/). 23)

As before, we need to find a test statistic and thresho}d using
2N samples from 7. We use IV samples to compute G and N
samples to compute Go. The DKW inequality shows that for
any 6. > 0,

1Go — Golle < 0 (24)

with probability 1 — 2e =2V,
From the bounds in and and our assumption on
the support, we have the following bounds:

|Go — Golly < |S]6.
— G| <150

(25)

HFﬂ'IDparam (26)
with probability 1 —2e~2V% and 1—2Me~2N% | respectively.

The decision rule we propose is to accept the null if

min  ||F — Gl <.

~ ) (27)
FeR(Go)

This decision rule finds the best L., approximation of the
reference G in the a-trimmings of the candidate eCDF Go.

We want to understand the relationship between the con-
tamination level v of the null, the trimming level «, and the
threshold . Let F* be the minimizer of (27):

F* = argmin ||F — G| (28)

FeR(Go)

Suppose the null is accepted by so that || F™* — Ci‘||OO <.
This implies

|F* = Gl <8 29)
By (T9), F* € Ra(Go) means Gy € Bi(F*,a), so
IF* = Gollx < a. (30)
Thus by the triangle inequality,
|Go — Gl < a+1S]. 3D

Combining this with the two high probability inequalities from

and we have

I Fr Dy — Gollt <+ [S|(y+ 6 +60).  (32)
with probability 1 — e, where
e < 272N 4 o2, (33)

For a fixed threshold 7, we can estimate the trimming level,
o, needed for the L., distance in to be less than or
equal to the threshold. Consequently, for a fixed test threshold
~, and with enough samples to make §, and 0. small, we
can estimate the contamination level v, in the contamination
neighborhood By (Fyip,,..n> V) of Frip,.....» for which the
robust two-sample hypothesis test would fail to reject the null
with high probability e. We use this in the next section to
propose a new measure for analyzing model variability.

IV. METRICS TO ANALYZE MODEL VARIABILITY

One of our goals is to use the framework from the ro-
bust two-sample test to design a measure of model discrep-
ancy/variability. As we show in the experiments, this new
measure can be more informative than existing measures.

A. A new trimming-based metric

In this section, we introduce how our trimming-based two-
sample test can be used to define a new measure of discrepancy
between a model with parameter 6y and the reference model
formed using 64,65, ...,60,,. In Algorithm |1} we estimate the
smallest « such that the test in accepts. We do this by run-
ning the test B times using bootstrap resampling from Diegy.
In each resampling we increase the trimming level « until the
test accepts. This is equivalent to finding a contamination level
v for the null such that the test accepts. The output & is the
average over the « values from each resampling and is our
proposed measure of discrepancy between model Go and G.

We compute G and Go by sampling uniformly from Diegq of
size Niest = 2N. Let Z = {z; §£1 be the combined ordered

arrangement of 2V logit values from G and Gy. For a fixed
a, we calculate the a-trimming of (o that minimizes the L -
distance to G. We then check to see if this trimming is within
the L ball around G of radius 7:

P(z) - G(z)| <7, (34)

max min

2€2 FeR,(Go)
We set our threshold to be v = §, by fixing the probability ¢,
in (I3), which follows from the two-sample DKW inequality
introduced in (T4).

A small & for a candidate model GGy implies the level of
trimming needed for it to be not rejected, meaning that_it
is close to G, which in turn is close to CJO. In Section [V
we compare & to metrics like accuracy and churn that are
commonly used to analyze model variability. We generate
multiple trained models from the randomization in the training
process. We can look at each trained model as a potential
candidate and use the rest to compute a reference.



Algorithm 1 Estimate & measure

Input: Test set Diegt, trained models {my: k € [M]}, can-
didate model my, threshold d,, trimming levels {a;}7_;,
bootstrap sampling number B.

Qutput: trimming level estimate &.
for b=1to B do

Compute G in (8) using {my: k € [M]}, and Gy in
using mg from two sets of N samples resampled from
Dtest-
Set Z = {z;}3X| be the ordered set of logit values from
G and Go.
Reject + 1, @« 0,t+ 1
while Reject =1 and t < T do
Q< O
Use Z to compute (34))
if Test accepts then
Reject < 0,
Qp +— «
else
t=t+1
end if
end while
end for

~ 1 B ~
G 5> e Qb

B. Other metrics for model variability

The accuracy of a model is

1 N
AO) = 5 D 1(0(x5:0) = vy). (35)
Jj=1
The churn is defined by
N
C(01,02) = > L(§(xs:61) # §(xj:62)),  (36)
j=1

which is the number of test points where the models disagree.
Both accuracy and churn focus on the predictions made by
models and do not use information about the logit gap function
m(x; 0x) beyond its sign. Looking at m(x;0y) directly gives
us other approaches to assess whether models are similar or
not: two models may have similar accuracy and low churn but
can have very different logit gaps.

We also consider a third metric for the qualitative as-
sessment of these models, the Expected Calibration Error
(ECE) [21]. The ECE is a summary statistic of model calibra-
tion which measures the difference in accuracy and expected
confidence and is obtained by partitioning the predictions into
R equally spaced bins B,

= |B,|
ECE(f) = )
r=1 N

|A(B,;0) — CONF(B,;6)|,  (37)

where
1 | Br|
A(B,;0) = B,] 1(§(z:0) = y;) (38)
mli=1
|Br|
1 . N
CONF(B,;0) = B T (y; = §(x;;0)|a;) (39)
T j=1

A perfectly calibrated model will have A(B,;0) =
CONF(B,;0). Although Niculescu-Mizil et al. [22] noted that
while DNNs are well-calibrated on binary classification tasks,
it is impossible for a model to achieve perfect calibration
in reality, making this another useful metric to assess the
quality of models produced through different random seeds
in conjunction with accuracy.

V. EXPERIMENTS

Our proposed measure of model closeness/discrepancy of-
fers new insight into questions around neural network training.
In this section, we perform a series of illustrative experiments
to demonstrate the utility of this measure:

o In Section [V-AT] we show that the eCDF of a deep
ensemble model reliably approximates the reference as
the size of the pool of candidate models in the ensemble
increases. Establishing this relationship at the very onset
allows us to qualitatively compare candidate models with
the deep ensemble substitute of our reference function,
while comparing candidate models to the reference func-
tion through the robust hypothesis test.

e In Section we use our proposed measure of model
closeness & to show the minimum number of candidate
models needed to form a reliable deep ensemble that
has less variability in different performance metrics and
approximates our reference function well.

o In Section and we connect the proposed
discrepancy measure to other metrics used to measure
network variability. We show how & is more informative
than validation accuracy alone through two case studies.
The first uses a small CNN to perform a binary classi-
fication task on the CIFAR-10 dataset. The second uses
a ViT variant, pre-trained on ImageNet, to perform the
same task on the same dataset. The former case study
allowed us to use neural networks with relatively few
parameters, so we can test the limits of the expressivity
of the proposed test and the latter to show how the same
test applies to large-scale pre-trained models as well.

For experiments in Section [V-A] and we chose the
following experimental setup. We used a small convolutional
neural network with two convolutional layers (having 32 and
16 features, respectively, with a 3 x 3 kernel size) followed
by one hidden layer of 64 units and a final layer of 2 units
that output the raw logits of the network. Details of the
network architecture and parameters are included in Section [C]
of Appendix. We train this network on a subset of the CIFAR-
10 dataset [23]], under the following settings:

e Of the 10 classes, we use 8 to create a binary classifi-
cation problem by merging them into two super groups.



Class 1 is comprised of airplane, automobile, ship, truck,
and class -1 is comprised of bird, dog, frog and horse.
o The training size is Nian = 40000 and test size is
Niest = 8000.
o We fix all hyperparameters other than the random seeds
by training all models for 50 epochs, with a fixed learning
rate of 0.001, and fix the batch size to 32.
We chose a small example to allow us to train many models
so that we can explore model training in different scenarios.
The authors acknowledge the use of high-performance com-
puting resources provided by the Office of Advanced Research
Computing (OARC), at Rutgers, for running the experiments
in this paper [24]. Code to compute the test statistic and &
metric of the two-sample version of the robust KS-test has
been made available online [25]].

A. Comparing the reference function and a deep ensemble

This section demonstrates how the eCDF of a deep en-
semble model H’, defined in (TO), closely approximates our
reference function G, defined in (8). Establishing this relation
will allow us to compare candidate models with the deep
ensemble substitute of the reference function using different
performance metrics like validation accuracy, churn w.r.t. a
deep ensemble, and the ECE, while comparing the eCDFs of
candidate models to the reference function through the robust
KS-test to analyze model variability. A lower ECE indicates a
better-calibrated model, while lower churn w.r.t. an ensemble
indicates less disagreement between candidate models and
an ensemble. We point the readers to Section for a
formal definition of these metrics. We train a total of 1600
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Fig. 4.  (Left) Histogram of logit gaps from the ensemble model with

the upper and lower envelopes representing the maximum and minimum
probability attained in each bin among individual candidate models. (Right)
A plot showing the evolution of validation accuracy of CNN models over
different epochs. The solid red dots represent the mean validation accuracy
over 800 seeds at each epoch, the light-colored area denotes one standard
deviation, and the purple area represents the maximum and minimum values
at that epoch.

models by randomly fixing a seed for each model. The
seeds control both initialization and batch order during SGD.
We use the first M = 800 models to create a reference
function G and set the rest M’ = 800 models to create
the eCDF of a deep ensemble H’. We choose different
ensemble sizes, M.ns € [3,5,10, 20,30, 70,100, 150, 200],
to observe the variability of ensembles in different metrics
and to understand how large of an ensemble we need to
approximate the reference function well. For each value of

Mens, we sample M, models without replaceznent from the
remaining M’ = 800 models and compute H’. We repeat
this experiment 500 times to get 500 ensemble models using
Mens components for each value of M,,s. Deep ensemble
predictors have been widely used in the literature to reduce
variability in DNN models [26], [27]. Candidate models will
have varying degrees of certainty on individual test points.
Taking the average of model “confidences” across independent
training runs makes them closer to their expected values,
lowering variability. Although ensembling through averaging
over softmax probabilities is common practice in the literature,
averaging over logits has also been investigated to address the
shortcomings of probability averaging [28], [29].

Figure {4 (Left) shows how the logit gap samples obtained
from ensembling M., = M’ candidate models compare with
candidate models in the pool. The ensemble model produces
fewer samples with small logit gaps (samples with higher
uncertainty) and large logit gaps (overconfident samples).

Figure [] (Right) shows the evolution of validation accuracy
of candidate models over epochs. The solid red dots in the
plot correspond to the mean accuracy over M’ seeds at each
epoch, the light-colored region corresponds to one standard
deviation, and the purple region corresponds to the minimum
and maximum accuracy at that epoch. As observed in the plot,
validation accuracy stops increasing from epoch 30 onwards,
hence the decision to stop training at epoch 50, which is well
past this optimization convergence. The same strategy was
adopted by Picard [6, Section 4.1] who discusses it in more
depth.

1) Closeness of a deep ensemble to the reference func-
tion: The first question we want to answer is how quickly
does the eCDF of an ensemble model approximate the
chosen reference? In other words, as M,,s approaches M’

how quickly does Hé .yl H decrease? To answer this, we

oo
compute the L., -distance between G' and H' and compare it
to the threshold set by the test in (T4). To set the threshold d,
in (13), we fix ¢, = 0.01.

Figure [5] demonstrates this convergence behavior. The
eCDF of all ensemble models H’, produced with My,s =
100, 150, and 200 candidate models have L..-distances from
G less than the threshold set for our KS-test. This empirical
evidence indicates that a deep ensemble eCDF more closely
resembles the reference function G as Meps approaches M.
Therefore, we expect any candidate model close to our ref-
erence function G, formed with M candidate models, to be
also close to a deep ensemble, formed with M., candidate
models, in terms of different performance metrics, provided
M.y approaches M’ = M.

Since the benefits of ensembling are observed even for pool
sizes as small as My, = 5 [26], it might be tempting to
focus on a few random seeds to generate a deep ensemble
model due to computational constraints. This brings us to
the next question: Does averaging over a small number of
candidate models to create an ensemble model result in a
reliable representative of the training procedure? We try to
understand this qualitatively. We investigate three metrics of
ensemble models as M,,s approaches M’: validation accuracy,
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churn w.r.t. a deep ensemble of pool size M.,s = M, and
ECE. In Figure [6] and Figure [7} we use 2-D scatter plots to
visualize the relation among the ensemble models w.r.t. these
three metrics. We expect the best ensembles to have high
validation accuracy, low churn, and low ECE.

As observed in Figure [6] and as we increase M,
we notice the ensemble models converge to high validation
accuracy, low churn, and low ECE. These “good” ensembles
are also the same models whose eCDFs have achieved a
smaller L. -distance from the reference function G in Figure
Some ensembles created from a small number of models
may outperform those created from a large number of models
in one particular metric, but it is always at the cost of perfor-
mance w.r.t. another metric. For instance, one of the highest
validation accuracies achieved in Figure [6] is an ensemble
model belonging to M.,s = 3. However, this model also has a
higher churn w.r.t. an ensemble of size Mo,s = M compared
to ensembles models with large Mepns (Mens = 100, 150, 200).
This is also reflected by the high L..-distance of this model
from the reference GG as shown in Figure [5| We conclude
that contrary to standard practice, exploring more than 5
seeds is important to create a reliable ensemble that has less
variability in different performance metrics. Thus, ensembling
over smaller pool sizes results in a deep ensemble that has
significant variability over different performance metrics,
and increasing the size M.,; of ensemble models reduces
this variability.

2) Selecting the number of models to be ensembled via
the robust KS-test: Section showed that it is possible
to create a good ensemble with enough models that have
less variability over different metrics and whose eCDF ap-
proximates the reference function well. The more models
we ensemble, the better and more consistent the ensembles
become. This brings us to our final question: How many
candidate models do we need to create a deep ensemble
model that is a reliable representative of the training pro-
cedure i.e. has less variability over different performance

metrics and approximates the reference function well?
Based on the threshold set by our test on the L..-distance
and as demonstrated in Figure [5] a classical KS-test will
indicate that we need to explore 100 random seeds to create
a reliable ensemble, which can then be used as a base model
for qualitative comparisons with candidate models. Since the
classical KS-test is too sensitive, setting a threshold based on
it will require too many models to create the ensemble. We can
use the proposed robust KS-test to also measure the similarity
between the ensemble function H’ and the reference function
G but with a little wiggle room. In practice, we also may
not want to rely on validation accuracy or churn to decide on
the number of models we need. So, the proposed test offers
a way to estimate this number using only the logits. To that
end, we compute & through a robust KS-test by measuring the
closeness/discrepancy of the eCDFs of ensemble models H,
of different sizes, with the reference function G. Similar to
Figure |5} in Figure |8, as M,,s approaches M’, & approaches
0. However, if we set a threshold on the a-trimming level
instead of the L., -distance, we get a better lower bound on
the number of models we need to use for a reliable ensemble.
If we consider all ensembles that require & < 0.05, we see
that ensembles created from M., = 30 models or more are
all included in this set as shown in column 2 of Table [I} while
more than 20% of ensembles created from M., = 3 models
have required a higher level of trimming. From Table I, we
notice that ensembles achieve better values in all metrics as
the size of the ensemble M., increases and the variability of
these three metrics reduces noticeably for ensembles created
from Mc,s = 30 models or more. Thus, our proposed
metric indicates that ensembling over at least M,.,; = 30
candidate models may be required for an ensemble to be
a reliable representative of the training variability.

TABLE 1
ENSEMBLE STATISTICS FOR DIFFERENT VALUES OF Mens
Mens % of models Accuracy Churn w.r.t. ensemble ECE
with @ < 0.05 mean + std mean + std mean + std
3 77.20 91.85 4+ 0.25 190.79 £ 33.90 0.0226 + 0.0048
5 89.20 92.03 +£0.18 145.70 £ 28.61 0.0200 + 0.0037
10 96.80 92.11 +0.14 103.57 + 22.50 0.0185 + 0.0023
20 99.40 92.17 +£0.11 76.972 +£17.23 0.0175 £ 0.0016
30 100.00 92.21 +£0.10 62.84 +12.45 0.0171 +0.0014
70 100.00 92.22 +0.08 43.45+9.64 0.0168 £ 0.0012
100 100.00 92.23 + 0.08 38.59 +9.08 0.0169 £ 0.0012
150 100.00 92.23 +0.07 32.75+7.42 0.0169 £ 0.0011
200 100.00 92.24 £+ 0.07 29.3 £6.91 0.0169 £ 0.0011

B. Evaluating the proposed metric of model closeness/ dis-
crepancy

We next move on to understand how our proposed measure
of model closeness/discrepancy relates to metrics commonly
used to understand model variability. We try to understand
this for candidate models generated under different sources
of randomness ( like initialization and batch order). In par-
ticular, we considered three scenarios: S;;; with only random
initialization and fixed batches, Syatcn, With only random batch
selection in SGD and fixed initialization, and S,;; combining
both sources of randomness. We trained 200 models in each of
Sinit> Spatcn, and S,y with the same hyperparameter settings
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as detailed at the beginning of Section [V] For each source of
randomness, we use M = 100 models to create the reference
function G, as defined in @) and from the rest M’ = 100
models, we choose our candidate models. For each candidate
model, we use its eCDF Gy, | € [M'], as defined in (7), to

compute & through a robust KS-test against the reference G.

1) Comparing our proposed discrepancy measure with ac-
curacy: Our first question in this section is: How does
our proposed metric & relate to accuracy? In Figure
[ we plot the relationship between the validation accuracy
of candidate models and & for candidate models in S;ui,
Spateh, and S,y1. For each plot, we notice significant variability
over random seeds in both & and validation accuracy for
the same hyperparameter setting. This is evidence that a
fixed hyperparameter setting that works well for one ran-
dom seed can perform poorly for another and thus produce
models with very different logit gap functions. We notice
more variability in both validation accuracy and & among

models in Sp,ich, than models in Si,;¢. Details of accuracy
statistics for each source of randomness are listed in Table
The mean accuracy of models in Si,; is slightly higher

TABLE I
VALIDATION ACCURACY FROM DIFFERENT SOURCES OF RANDOMNESS

Source of Accuracy Accuracy Ensemble Accuracy range of
rand: mean + std range accuracy | models with & < 0.05
Sinit 91.101 £ 0.302 | [90.422, 91.781] 91.731 [90.422, 91.781]
Shatch 90.819 + 0.554 | [87.852, 91.843] 91.731 [90.409, 91.843]
San 90.810 + 0.560 | [88.513, 91.769] 92.361 [90.409, 91.769]

than models in S,j, and Sy.cn, while all three categories
have achieved similar maximum accuracy as observed in the
accuracy range column. The higher variability among models
in Spascn comes from producing models with much poorer
validation accuracy than S;,i;, a trend also observed in Sy,
as reported in the minimum accuracy of the accuracy range for
each category. This indicates that in this case study, random
batch shuffling has a higher effect on the overall variability
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Fig. 9. 2-D Scatter plot to visualize how &, computed using the robust KS-
test against the reference G, relates to validation accuracy for 100 candidate
models (each dot in the plots) in Sipit, Shatcn and Sair-

among models in S,);, than random initialization. We also
notice that although there is more variability among models
in Spatcns than Sy, the ensemble model has performed the
same for both categories. However, the combined variability
of Sipnit, and Spaten, reflected among models in S,y has led to
a better ensemble performance in S,;.

We also look at models admitted by small values of & in
each category (e.g. & < 0.05), and observe the corresponding
range of validation accuracy, reported in the fourth column of
Table [IIl For Siy;t, the range of accuracy achieved by models
admitted by & < 0.05 covers the full range of accuracy of all
models in S;,;;. This range is also close to the range of models
admitted by & < 0.05 in S,y, and Spagen. The maximum
validation accuracy for each source is also admitted by small
values of &. This is because candidate models aggregate to
form ensembles that result in a boost over average performance
in the group. Since models with lower & are close to the
reference function in terms of their eCDEF, and hence also to the

ensemble, they will also have accuracy similar to the ensemble.
For each source of randomness, if we consider the range of
validation accuracy for models admitted by small values of &
to be representative of the training variability (as a result of
being close to the reference function), then any model that has
performed worse than this range will end up with a high value
of &. This can be observed for Sp.ich, and Sy since these
two categories have resulted in more models with performance
worse than the discussed range. However, the opposite is not
true, i.e. models with accuracy within the discussed range
will not always have a small &, and hence will not be good
representatives. This shows that validation accuracy alone is
not the right metric to assess model quality. A model can end
up within the discussed range of validation accuracy but not be
a good representative of the training variability over random
seeds. We conclude that smaller values of & does not admit
poor validation accuracy, but similar validation accuracy
does not imply similar &.

TABLE III
PAIRWISE CHURN FOR DIFFERENT TYPES OF RANDOMNESS

Source of Range of Range of pairwise churn of pairs of
rand pairwise churn | models with (d; < 0.05,d; < 0.05),i # j
Sinit [270, 481 ] [270, 481]
Sbatch [218, 1174 ] [ 218, 538]
San [327, 1184 ] [327, 591]

2) Comparing our proposed discrepancy measure with pair-
wise churn: How does our proposed metric & relate
to pairwise churn? In Figure we plot the relationship
between the pairwise disagreement between candidate models
or churn, and &, for candidate models in S;nit, Spatcn, and
San- We distinguish this from churn w.r.t. a deep ensemble
by labeling it as pairwise churn. Similar to the trend observed
for validation accuracy, there is more variability in pairwise
churn among pairs of models in Syatcn, than Sy, as observed
in the pairwise churn range for each random source reported
in column 2 of Table Again, most of the variability in
pairwise churn in S,j is due to Spa¢ch. In Figure for
Spatch, and Say, we observe that as the range of pairwise
churn increases, the scatter plot becomes less dense in the
region where both the models have a low &. This indicates
that pairs of models with low values of & for both models
achieve pairwise churn in the smaller range among its group.
This is less obvious for models in S;y;¢, because this group’s
total range of pairwise churn is low. We see this in column
3 of Table where we focus on pairs of models in each
category that have achieved pairwise & less than 0.05 and
report the range of pairwise churn for those models. Since
the range of pairwise churn of pairs of models in Sj,; is
low, small values of pairwise & have admitted this full range.
However, for Sy.cn, and S,y, since the total range of pairwise
churn is much larger than that of S, small values of &
have admitted only those pairs of models that have achieved
a pairwise churn in the smaller range of the total range. Any
pairs of models with pairwise churn higher than this range
will have at least one model in the pair with a high &. A
possible explanation for a pair of models with low pairwise &
also having a low pairwise churn is that models with low &
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into 4 ranges (plotted along the columns) indicated by the colorbar. The banded structure of the plot is because our hypothesis test checks for only discrete

values of a.

are expected to consist of “good” models that are similar to a
good quality ensemble. Since these models achieve validation
accuracy within a higher range among their group, the number
of points they will make mistakes on will be low. This will
also result in a low pairwise churn because these models will
only have a limited number of test points to disagree on. As
observed for validation accuracy, the opposite is again not true
for pairwise churn, i.e., models with low pairwise churn will
not necessarily have small values of pairwise &. To summarize,
if both the candidate models in a pair are close to the reference
function then their pairwise churn will be low. However, if one
candidate model in a pair is close to the reference function,
while the other is far away from it, then the pairwise churn
between these models can be either high or low. We conclude
that smaller values of pairwise & does not admit high
pairwise churn but low pairwise churn does not imply
smaller pairwise A.

3) Our proposed discrepancy measure is more informative
than accuracy: We now provide evidence that & is more infor-
mative than validation accuracy for model comparison. Figure
[[1] and Figure [12] show the relationship of & of candidate
models in S,y with three metrics: validation accuracy, churn
w.r.t. the ensemble of candidate models, and their ECE, in 2-D
and 3-D respectively. If the eCDF of a candidate model is close
to the eCDF of the reference function, i.e. for smaller values
of &, the variability in each of the three metrics is confined to
a range that includes the best value in each metric, with the
worst value not differing too much from the best value. For
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Fig. 11. 2-D scatter plot to visualize the relationship of & of candidate models

in S,y with their average cdf, G, in terms of (Left) Validation accuracy,
(Middle) Churn w.r.t. their ensemble and (Right) ECE.

each metric, we can think of the range of values corresponding
to a small & as the minimum variability observed in models
that are close to their expected distribution. Any model that
has achieved a value worse than this range will also have a
high &. Models with low & are within a higher accuracy range
among their group and have ECE and churn w.r.t. ensemble
within a low range. However, the converse is not true, i.e.



A
a
o ., 0.4
o ocy,
®
5 9° s ° 0.3
2 90(,) Oso
Ca @ 0.0> 0.2
o ©
e ¥ o
‘b%,i‘)QQQ -04
L ® ECE
07:/»,,4’ ”)C’D\QQ,’)Q 0.0 EC o1
e PSS @
¢ s < & 0, 0
Nse,, 8 o
’774)/@

Fig. 12. 3-D scatter plot to visualize how & compares to other metrics for 100
candidate CNN models performing a binary classification task on CIFAR-10.

TABLE IV
TABLE SHOWING & VALUES FOR CNN MODELS WITH SIMILAR
VALIDATION ACCURACY AND THEIR CORRESPONDING VALUES ACHIEVED
IN OTHER METRICS.

ECE Churn w.r.t. Validation | Average &
ensemble accuracy churn
Model 1 | 0.028 297 91.108 472.15 0.002
Model 2 | 0.021 280 91.519 458.61 0.005
Model 3 | 0.026 265 91.581 459.37 0.005
Model 4 | 0.030 309 91.157 47591 0.016
Model 5 | 0.023 318 91.769 476.95 0.021
Model 6 | 0.030 371 91.382 482.45 0.024
Model 7 | 0.029 307 91.556 476.35 0.027
Model 8 | 0.026 376 91.569 513.83 | 0.134
Model 9 | 0.038 425 91.182 552 0.201

high accuracy or low churn w.r.t. ensemble or low ECE alone
does not imply low &. These models can achieve a value
that is within a good range of values in one metric but can
perform poorly in another metric, and this is reflected in the
corresponding & value. To see this, we focus on models that
have achieved a similar high validation accuracy and look at
other metrics like ECE, average churn for each model w.r.t. all
other models, and churn w.r.t. their ensemble in Table 1e%
is low if all three metrics fall within the previously discussed
good range of values. An increase in & (denoted in bold)
in Table indicates a reduction in quality in one or more
of these metrics. We can see that most models with similar
validation accuracy in Table have needed only a small
trimming level (& < 0.05) to not reject the null. But for model
8 and model 9, we see that despite having similar validation
accuracy to other models in the group, & values are large due
to a reduction in quality in other metrics (denoted in bold).

C. Application in Transfer Learning

We conclude our experiments by demonstrating the use-
fulness of our framework in transfer learning. A common
transfer learning setup is when a model trained on one task
(usually on a large dataset) is fine-tuned to perform a different,
often related task, using a smaller dataset. The smaller dataset
(target domain) is assumed to be from the same distribution as
the larger dataset (source domain). The pre-trained models in
transfer learning are typically very large, designed to capture
a wide range of useful features from a vast amount of data,
allowing them to generalize well to a variety of tasks.

We use a Vision Transformer(ViT) variant [30], pre-trained
on ImageNet, to perform a downstream binary classification
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Fig. 13. (Left) A plot showing the evolution of validation loss of pre-trained
ViT models, over different epochs. The solid red dots represent the mean of
validation loss over 45 seeds at each epoch, the light-colored area represents
one standard deviation, and the orange area represents the maximum and
minimum values at that epoch. (Right) A plot showing the evolution of
validation accuracy of pre-trained ViT models, over different epochs. The
solid red dots represent the mean of validation accuracy over 45 seeds at
each epoch, the light-colored area represents one standard deviation, and the
purple area represents the maximum and minimum values at that epoch.

task on CIFAR-10 (as described in Section[V)). The pre-trained
model is available as part of the Hugging Face Commu-
nity [31]. We only train the final task-specific classification
layer for 5 epochs (till close to convergence as visualized in
Figure[I3) and rely on already fine-tuned hyperparameters and
the pre-trained weights of the upstream task to “fine-tune” the
downstream binary classification task over random seeds only.
Thus, keeping the fine-tuning regime and pre-trained weights
fixed, we only vary the random seed that controls different
sources of randomness in the training procedure (initialization
and batch order during SGD), generate 90 models, and observe
the variability over random seeds for this fixed setup. As
observed by Picard et al. [6], there is less variability in
validation accuracy over random seeds when using pre-trained
models. A

We create our reference function G using the first 45 models
and treat the remaining 45 models as our candidate models G,
[ € M', for comparison with the reference. We conduct the
same experiment as in Section where we run our robust
hypothesis test between the reference function G' and candidate
models G to compute our proposed discrepancy measure .
Following similar reasoning to Section in Figure [14]
we observe how our proposed metric is more informative
than validation accuracy. The measure & is indicative of the
quality of models in terms of other metrics like ECE, churn
w.r.t. an ensemble, and average churn of candidate models
w.r.t. all other models in the pool alongside accuracy. A higher
& 1is usually accompanied by a reduction in quality in one
or more of these three metrics, denoted in bold in Table
[Vl Although pre-trained large-scale models provide us with
very high validation accuracy and less variability in different
metrics, our experiment demonstrates how smaller values of
& are still helpful in identifying the best representatives of the
training procedure.

For the next set of experiements, we use the first M = 45
models to create a reference function GG and set the rest
M " = 45 models to create the eCDF of a deep ensemble
H'. We choose different ensemble sizes, My, € [3,5, 10, 30],
to observe the variability of ensembles in different metrics.
Figure[15] and Figure[I6]show the relationship among different
metrics for ensembles of the pre-trained candidate models.
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Fig. 14. 2-D Scatter plot to visualize how &, computed using the robust KS-

test against the reference G, relates to validation accuracy for 45 candidate
ViT models (each dot in the plots) differing in random seeds.

TABLE V
TABLE SHOWING & VALUES FOR PRE-TRAINED VIT MODELS WITH

T 99.15 99.15

>
99.10 99.10
2.000 13.602 25.204 36.806

Churn w.r.t. ensemble of size Meps =M

2.000 13.602 25.204 36.806
Churn w.r.t. ensemble of size Meps =M

Fig. 15. 2-D scatter plot to visualize the relationship among ViT ensemble
models in terms of validation accuracy, and churn w.r.t. an ensemble of size
Mens = M. For each value of Mens, we choose Mens candidate models
to form one ensemble model and repeat this experiment 500 times through
sampling with replacement to create 500 ensemble models. Thus, each dot
with a fixed color represents one out of these 500 ensemble models and each
color indicates the value of Mengs or the number of candidate models in the
pool. Several ensemble models have achieved the same accuracy or churn
resulting in fewer than 500 visible models.
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Since all the individually trained models achieved very high 8 0020 5020
validation accuracy and low variability, the ensembles did not € .15 99.15

result in significant performance gains over their constituents.
This low variability also resulted in a lower & for most pre-
trained candidate models, as seen in Figure [T4] If all models
performed similarly, ensembling them would not make much
difference. Thus, moderate variability in model performance
may be required for the pool of candidate models to benefit
from ensembling, which implies that & for all candidate
models cannot be too low.

The low variability observed in pre-trained ViT models in
the above setting does not generalize to all types of pre-trained
models. Dodge et al. demonstrated that finetuning pre-trained
language models, like BERT, over weight initialization, and
data ordering, results in significant improvement in perfor-
mance metrics, indicating the instability of the training process
in large language models [[11]. They provide evidence that
some data orders and initializations are better than others and
emphasize the need for more rigorous reporting of benchmark
model performance for comparisons across different archi-
tectures. However, like most previous works, they also use
accuracy as their metric to analyze fine-tuning variability. Our
metric & can add an extra layer of reliability by identifying
“good” seeds that closely represent the expected training
behavior.

Through these experiments, we highlight the importance of
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ECE

0.005 0.001 0.002 0.004 0.005

Fig. 16. 2-D scatter plot to visualize the relationship among ViT ensemble
models in terms of validation accuracy, and ECE. We follow the experiment
in Figure E to create the ensemble models.

treating the seeds that control random elements in a DNN as
a separate hyperparameter that needs “tuning” and propose a
framework to reliably select seeds that do not rely solely on
commonly used performance metrics like validation accuracy.
When good seed selection is needed to account for the
variability caused by random seeds, we recommend using a
rule of thumb such as exploring at least 30 seeds and choosing
the seed that generates a model with high validation accuracy
and small 6.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a framework for random seed
selection of a DNN with a fixed architecture and a fixed
hyperparameter setting. Our proposed framework is based
on a robust two-sample hypothesis testing problem that uses
trimming of the eCDF of samples obtained from the logit gap
function. Our test assesses the closeness of candidate models



in a pool with their expected eCDF by down-weighting that
part of the data that has a greater influence on the dissimilarity.
We also provide some evidence that our new measure, the
trimming level &, could be a more informative metric to
assess model performance than commonly used test/validation
accuracy. This allows us to perform random seed selection in a
more principled fashion instead of relying solely on trial-and-
error methods or metrics like validation accuracy. Although
our paper focused on the influence of the random seed on
model variability, our method can be extended to investigate
the influence of any hyperparameter.

Since the usefulness of our methodology relies on en-
sembles achieving significant performance gains over their
constituents, we investigate the behavior of the ensemble as
the number of models in the ensemble pool increases. Our
proposed metric & can also be used as a stopping criterion
for the number of different seeds that need to be explored
for an ensemble model to reliably approximate the expected
eCDF of the logit gap distribution of candidate models,
and to have less variability in different performance metrics.
Although ensembling by model averaging in the output space
is quite straightforward and usually results in performance
gains, this comes at the cost of reduced interpretability, since
such ensembles do not learn any parameters or features. By
selecting models that are close to their ensembles in the output
space of a DNN, instead of the ensemble itself, our framework
leaves room for model interpretability while at the same time
maintaining high accuracy compared to their counterparts. Our
methodology is useful in critical application areas like credit
risk assessment where a single model is often preferred over
the improved accuracy of an ensemble due to interpretability
concerns [32].

There is a common belief in the ensemble learning litera-
ture that increasing diversity among ensemble members will
improve the quality of the ensembles [33]] [34]. If all models
were to perform exactly the same then the ensemble of these
models are not going to perform any better than a single model
in the ensemble. As observed from the experimental results in
the transfer learning application, low diversity in models would
indicate lower values of & for all candidate models. However,
imposing too much diversity among ensemble members can
also be detrimental to the ensembles performance as increasing
diversity can sacrifice overall model performance. In this
scenario, we would likely find many models with large &.
Through our test, & will select models that are closer to
a poor performing ensemble, which may lead to selecting
random seeds that achieve poor accuracy. Thus, in scenarios
where ensembling by model averaging might not lead to
significant performance gains over candidate models in the
pool or hurt performance, future extensions of this work
include investigating when candidate models form effective
ensembles.

We are also interested in extensions to multi-class classifica-
tion and exploring robust two-sample hypothesis testing based
on other distance metrics like the Wasserstein metric [35]].
In this work, we focused on samples from the logit gap
function as our probe to understand deep net variability. We
can look at other functions of the trained models, such as the

Jacobian or the Neural Tangent Kernel of functions learned by
these models [36]. The eigen-distribution of these matrices for
instance can inform us how well individual candidate models
can generalize to test data.

APPENDIX A
PROOF OF THEOREMI]

Proof: Both F
parameters. Define

|Dparam @A G take averages over M

Ar(t) = Eqjp, [L(m(x,6r) < t)], and (40)
e
Bi(t) = & ; L(m(z;;61) < ) (1)
Then we can upper bound ‘ Fripyram — G H by
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For each 6y, By is the eCDF of samples drawn from a
distribution with CDF Aj. By the DKW inequality [13]],

Prio, (|1 Ax — Brll oo > dp) < Qexp(—QN(Sf). (43)

Taking a union bound over Dparam = {0k : k € [M]} we get,
]P’ﬂpp_dmn(Elk c [M] S.t. HAk — Bk”oo > (Sb)
< 2Mexp(—2Nd2).  (44)

Therefore, each term on the right-hand side of is smaller
than &, w.h.p. and as desired,

P Dpacam (’

F, -Gl <a)
>1—2M exp(—2N67).

|Dparam

(45)
]

APPENDIX B
MORE DETAILS ON TRIMMING

A. Impartial trimming

In Section [[II-Bl we introduce a robust version of the
KS-test, where we allow outliers in samples from the null
hypothesis using a-trimming of distributions. For complete-
ness, we present the concepts on a-trimming of a distribution
w.r.t. a reference distribution as introduced by Alvarez-Esteban
et al. [18]]. Trimming allows us to assume some outliers in
samples that did come from the null distribution and helps
quantify the fraction of these outliers.

Let £ be the number of trimmed observations, and let o« be
the trimming fraction, which implies £ < na. Given n i.i.d
samples {x; }?_; with probability distribution Py, the empirical
measure can be defined as 1 Y7 | 6P (x;), where 6P (z)
is the Dirac measure. To not reject the null, we can remove
outliers by assigning a weight of 0 to the bad observations
in the sample and adjusting the weight of good observations
by ﬁ However, we may not want to completely get rid
of samples from the feasible set and instead downplay the
importance of bad observations by modifying the empirical



measure to be L3 widy,, where 0 < w; < c and

1
1—a)’
%Ei:l w; = 1. This is called an impartial trimming )of the
probability measure P;. For the remainder, we use the term
impartial trimming interchangeably with trimming.

An a-trimming of the distribution P;, denoted by R, (P),
is defined as [18| Definition 1],

Ra(P)={PEP:P< P, 3

where P, P are probability measures on R, 0 < o < 1, and
we say P is an a-trimming of P if P is absolutely continuous
w.r.t. P, and satisfies the above definition. The set of R, (P;),
the a-trimmings of P, can be characterized in terms of the
trimming function h. The function / determines which zones
in the distribution P are downplayed or removed.

Let C, be the class of absolutely continuous functions
h :[0,1] — [0,1], such that h(()) =0, and h(1) = 1, with
derivative //, such that 0 < b’ < ——. For any real probability
measure P, the following holds [18, Proposition 1 a.],

Ra(PL) = {P € P: P(—00,t] = h(Py(—00,t]),h € Cu}. (47)

£<

<o a)Pl a.s.} (46)

B. Trimmed Kolmogorov-Smirnov distance

Given two distribution functions, F. . and Gy, as defined

in Section [[I-B] the KS distance is given by,
d(FTXTHGO) :Su£|FT><7T(‘r) _GO(:C)| (48)
e

We similarly define the a-trimmed KS distance functional as,

d(Frxr,Ra(Go)) =  min  d(Frur, F).  (49)
Ra(Go)

The plug-in  estimator for  d(Frxr, Ra(Go)) __is

d(Frxx, Ro(Go)), where (o, defined in Section

is the empirical distribution function based on a sample of
N independent random variables with common distribution
function Gg, and F.. . is our null distribution. A practical
computation for d(F. Tx,r, a(éo)) uses function Fy 0 Ggl
to express d(Frxr, Ro(Go)). If Fry . is continuous and z
(generated samples) has distribution function Gy, Fx, 0 G_
is the quantile function associated with the random varlable
Y = F.xx(x). This gives rise to the following lemma and
theorem for computing the trimmed KS distance between a
theoretical distribution and an eCDF [20],

Lemma 1 ( [37], Lemma 2.4): If Gg, F;«, are continuous
distribution functions and Gy is strictly increasing then,

d(Frxns Ra(Go)) = min [[h = Frux 0 Gg 'l (50)
d(Frxr, Ra(Go)) :}?Elicxl||h—FWoégl||. (51)
Theorem 2 ( [37]], Theorem 2.5): Suppose I : [0,1] — [0, 1]
is a continuous non-decreasing function and let
t
B(t)=T()— 52
() =T - 7, (52)
U(t) = sup B(s), (53)
t<s<1

L(t)= inf B 4
(t) og;gt (s), and (54)

oy (1) = max ((mm (U(t) ; L(t))o) (1:aa

)) (55)

Then
AT ()
ha = ha + m
is an element of C, and minyec,||h — T|| = [|ho — T|| =
, with assumptlons on I' holding for I" = FTX,TOGJ .
In our application we don’t have access to F,x,, and as
discussed in Sectionm our robust hypothesis test is against
the reference function G. Since this function is an average of
¢CDFs and not a continuous function, for practical computa-
tion of dﬁG‘,Ra(Go)), we consider the linearly interpolated
CDF of G, which we denote as él. Thus, running the test in
(34) is equivalent to running the following test,

(56)

N - H 1
max min |Gi(z) — F(z)| 21 do + —, (57)

z FeRa(GO) 7:[0 N
where we arrive at the threshold on the rlght -hand side

= and then

by considering the inequality HG GlH < N

applying the triangle inequality.

APPENDIX C
ADDITIONAL EXPERIMENTAL DETAILS

Figure [I7) shows the CNN architecture and parameters used
in Section [V]

CNN Summary

path | module | inputs outputs parans

o £10at32[39873,32,32,3] | - float32[39873,2]
- float32[39873,64]
- float32[39873,64]
- float32[39873,16,16,16]
- float32[39873,16,16,32]

- float32[39873,32,32,32]

conva | conv loat32[39873,32,32,3] | float32[39873,32,32,32] bias: float32[32]
kernel:

float32[3,3,3,32]

896 (3.6 KB)

cow2 | Conv | float32[39873,16,16,32] | float32[39873,16,16,16] | bias: float32[16]
kernel:

float32[3,3,32,16]

4,624 (18.5 KB)

DENSEL | Dense | float32[39873,1024] float32[39873,64] bias: float32[64]

kernel: float32[1024,64]

65,600 (262.4 KB)

DENSE2 | Dense | float32[39873,64] 1oat32[39873,2] bias: float32[2]

kernel: float32[64,2]

130 (520 B)

Total | 71,250 (285.0 KB)

Total Parameters: 71,250 (285.0 KB)

Fig. 17. CNN Architecture
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