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Abstract—Crowdsourcing algorithms often work under the
assumption that the data samples are independent. Recent work
has shown that data dependence, such as temporal correlations
in sequential data, can be leveraged to improve the label quality.
Existing methods that exploit this special structure rely on third-
order statistics of the annotator outputs to ensure the identi-
fiability of key latent parameters, which are costly to acquire.
This work proposes an approach for integrating crowdsourced
annotations under the Dawid-Skene/Hidden Markov Model (DS-
HMM) for sequential data based on second-order statistics, which
naturally enjoys a lower sample complexity. An effective algo-
rithm is proposed to tackle the challenging optimization problem
associated with the proposed estimator. Numerical experiments
showcase the effectiveness of the data labeling paradigm.

I. INTRODUCTION

In machine learning (ML), there is an insatiable demand for
labeled training data. However, acquiring accurately labeled
samples at scale is highly nontrivial. Sophistication and do-
main expertise from multiple annotators are often required.
It is common to employ a crowd of annotators to label
large datasets. Consequently, some annotators may produce
inaccurate labels. Crowdsourcing techniques aim to integrate
such noisy labels to produce more accurate annotations.

The naive approach to integrating multiple labels in crowd-
sourcing is majority voting (MV), whose performance is
limited in practical scenarios [1], [2], [3]. A more principled
approach to label integration was introduced by Dawid and
Skene who postulated that each annotator may have an implicit
fixed probability of providing label i when shown a sample from
class j [4]. Consequently Dawid-Skene (DS) model assumes a
confusion matrix for each annotator whose entries correspond
to the probabilities of the correct and incorrect annotations
conditioned on the true labels. This model has led to a plethora
of label integration algorithms in crowdsourcing, including
iterative approaches based on expectation maximization (EM)
[4], [5], [6], [7], [8], spectral approaches based on annotator’s
label statistics [9], [10], [11], and many developments using
tensor and matrix factorization techniques [3], [2], [12], [13].

Most DS model-based approaches assume that the samples
are independent, and leave potential relationships between
samples unexploited. When the samples to be labeled are
sequential in nature, such as frames of a video sequence or words
in a sentence, such temporal dependence provides additional
structural information. The work in [13] has shown that by
assuming that the true labels correspond to hidden states in
a Hidden Markov Model (HMM), this sequential structure
can be utilized for improved label estimation. Their method

Shahana Ibrahim
University of Central Florida
shahana.ibrahim @ucf.edu

Xiao Fu
Oregon State University
xiao.fu@oregonstate.edu

is a two-stage procedure. The method combines the tensor-
based moment-fitting algorithm using third-order statistics of
annotator outputs [3], coupled with an EM-based refinement in
order to learn the associated model parameters.

In this work, we revisit the DS model-based HMM presented
in [13] for integrating crowdsourced noisy annotations for se-
quential data. Contrary to the existing tensor-based approach that
utilizes third-order annotation statistics, we present a novel alter-
native that employs only second-order statistics, reducing sam-
ple complexity. In addition, we propose a volume-minimization-
based coupled nonnegative tri-factorization (VolMinCTF) cri-
terion to learn the relevant parameters in a single step, which
avoids potential error propagation in multi-stage approaches.
Furthermore, we design an efficient algorithm for handling the
proposed VoIMinCTF criterion with convergence guarantees.
Simulations showcase the effectiveness of our approach.

II. BACKGROUND

Consider a collection of T data samples, {x, € Rd}thl,

such that each data sample belongs to one of the K classes
with corresponding labels {y, € {1,2,... ,K}}[T:l. That is,
v, = k if x, is a member of class k. Let us denote the label
of tth data sample by the annotator m for m = 1,..., M
by fmn(X;). The output can be regarded as a discrete random
variable whose alphabet is {1,2, ..., K}. Note that f,,(x;) # y;
often happens. Assume that sample ¢ is assigned to a subset
of annotators N; C {1,2,...,M}. Given the collection of
annotator responses, {f;(X;) i € N,}thl, the goal of a
crowdsourcing algorithm is to estimate a label for each sample,
9+, such that the estimate recovers the ground-truth label y;.

Following the DS model [4], the annotators’ ability to label
samples can be modeled using the so-called confusion matrix.
Suppose that annotator m assigns a label j for any sample X from
class k with an unknown but fixed probability. The nonnegative
matrix, A, € RKXK that collects these probabilities as

Am(j, k) = Pr(fin(X)=j 1Y =k) (D

is referred to as the confusion matrix of annotator m. Note that
wehave AJ1=1, A,, > 0 where 1 € RX is an all-one vector.

In line with the Dawid-Skene (DS) model [4], let us assume
that annotator responses to a data sample X are independent
when conditioned on the true label Y. That is,

Pr(f1(X) = j1, (X)) = jo,.... fm(X) = jm)

S )
Pr(fn(X) =jm | Y =k)Pr(Y =k).

=l m=1
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Fig. 1: Illustration of a Hidden Markov Model, {(x;,y;)}~

t=1’

where the samples are the observed states and the true labels

correspond to the hidden latent states. The label prior is d and the transition probabilities are specified by T. The annotator
responses, f,(X), are generated with probabilities defined by the confusion matrices, A, form =1,..., M.

Let us denote the vector of prior probabilities by d(k) =
Pr(Y = k). The label integration task under the DS-model
amounts to identifying the M confusion matrices, A,,, and the
K-dimensional vector of prior probabilities, d. After learning
these model parameters, the label of each sample can be
predicted by constructing a maximum a posteriori (MAP)
estimator.

Following (2), the joint probability of the responses from
any two annotators m and n can be modeled as Ry, , (i, j) =
Pr(fin(X) =14, f(X) = j),i,j €{1,...,K} where

R, = A, diag(d)A, 3)
is a K X K co-occurrence matrix; also see [2], [12].

A. Dependent data

In many cases, data samples may exhibit temporal depen-
dencies, i.e., the probability of the rth sample, x,, having label
v+ = k depends on the value of y,_;. This might occur in
tasks that involve sequential data such as annotating frames
of a video sequence or part-of-speech labeling in natural
language processing. In this work, we revisit the DS-model
based hidden Markov model (DS-HMM) presented in [13],
for such sequential data labeling paradigm. To be specific,
the model assumes that the sequence of labels yi,y2,...,yr
forms a stationary, time-homogeneous, discrete-time Markov
chain, with transition matrix T € RX*K and the corresponding
transition probabilities T(j, k) = Pr(y; = j | y;-1 = k). Here,
the sequence {(x,,y,)}tT:1 follows a hidden Markov model
(HMM) where the data samples Xx;’s are the observed states
and the true labels y,’s correspond to hidden latent states—see
Fig. 1. The model was shown useful in dealing with sequential
data [13]. Nonetheless, the approach in [13] needs third-order
statistics of the annotator outputs, which can be sample-costly.
The work in [13] also employs two-stage algorithms, yet such
approaches may suffer from error propagation between the
stages. In this work, we propose a one-stage alternative using
sample-efficient second-order statistics.

III. PrROPOSED APPROACH
A. Pairwise Statistics-based Modeling

Consider the joint probability that annotator m returns label
i for sample x, after returning label / for sample x,_;. Let us

assume that these joint probabilities form the elements of the
consecutive-step co-occurrence matrices (CSCO) defined as

CETV (D) 2 Pr(fu(x) =i, fu(xem1) = 1), (4)

as the sequential analog of the co-occurrence matrices from (3).
Since the Markov chain is stationary and time-homogeneous,
these joint probabilities do not depend on the value of .
Hence, we drop the superscript ¢ in the notations for the sequel.
According to Bayes rule and the definitions of the confusion
matrices A,,, the prior vector d, and the transition matrix T, by
letting @ = T diag(d), the CSCO matrices can be written as
follows:

ciD = A,,0A] . (5)

If all CSCO matrices CYh" Vm,n € {1,...,M} are
available (in practice, C,(ﬂtji,_l) are estimated using consecutive
samples co-labeled by annotators m and n), one can construct an

augmented co-occurrence matrix of size MK X MK as follows:
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Hence, the label integration task for sequential data boils down to
learning a nonnegative tri-factorization model under DS-HMM.

B. Proposed Algorithm: VolMinCTF

Our goal is to estimate the DS-HMM parameters, A, for all
m and O, using the relation (6). Towards this task, we propose
a volume-minimization-based coupled matrix tri-factorization
(VoIMinCTF) to jointly estimate the model parameters with
or without completely observing C. Let 2 C {1,...,M} X
{1,..., M} be a subset of the blocks in the augmented CSCO
matrix C, where (m, n) € 2, if C,, ,, has been observed. Since
each C,, , describes a joint probability distribution—see (4))—
we use the Kullback-Leibler (KL) divergence as the fitting
term in our objective function. Consequently, we propose the
following coupled factorization criterion:



min 3" Dy (Cpn | AnOAT) + Alog det(87O + 61)
0.{An}
(m,n)eQ
st.A, >20,1TA, =17, forallm=1,..., M,
1701=1, (7

where D, (X[|Y) = X ; xij log . denotes the KL divergence,
vol(@) = logdet(@TO + 61) 1s a volume regularizer [14],
and A > O is the regularization hyper-parameter. The volume
regularizer helps to find the minimum-volume data-enclosing
simplex that leads to identifying latent factors of the nonnegtive
trifactorization model (6)—in [15], [16], [14], [17], [18], [19],
[20]. Note that the constraints are used to respect the probability

simplex constraints on the columns of A,,, T, and d.

Since (7) is not convex, we propose to solve it inexactly
by minimizing a convex upper-bound of the cost function
using the block successive upperbound minimization (BSUM)
framework [19], [21], [22]. The majorizer is computed in two
steps. First, we find a convex majorizer for the data-fidelity
term, i.e., the term that sums all KL divergences. Let 7 index
the iterations. At step 7, suppose that we have an estimate of
{Aﬁ,f ) }fn’le and @ (V) from the previous iteration. Define

A(T)(i 1O (r, )AL (j, 5)

(T) A
Umn' .(r,s)z (8)
e K AW 10 (1 )AL (rs)
so that Zr,’(,s:l ULZLJ’J. (r,s) =1, and let
(i,r)O(r,s)A,(J s)
x(r.g) & A T o & ©)
m n,i,j

With these definitions, one can represent each summand in the
KL divergence term in (7) as a scalar function defined with
respect to an element of the unknown groundtruth second-order
statistics, i.e., dgr (-]-) : R X R — R, such that

des (c
= Cun (i, ) log Cm,n(i7 J)

K
> An(i,nO(r, s)A,,(j,s)) .

r,s=1

K
(6 ) 1Y onn o s)x(r, s>)

r,s=1

(10)
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The negative logarithmic function is convex. Hence, by Jensen’s
inequality, we can compute a locally tight convex majorizer:

K
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Atiteration 7, the first term on the R.H.S. of (11) is constant with
respect to the optimization variables. Hence, we can construct
a locally tight convex majorizer for the data-fidelity term of the
objective function (7), that is separable in A,,, A,, and @.

The volume-regularizer log det(@ T @ +61) is concave. Hence,
we can find a convex surrogate via the Taylor expansion. At step
7,let F(7) = (@ TO) + 6I)~!. Then we obtain

logdet(©@7O +61) < Tr(FVO7O) +logdet((F)™) - K

(12)
where equality holds when @ = ©(7)—see the detailed
derivation in [14]. The last two terms on the R.H.S. of (12)
are constant with respect to the optimization variables. Hence,
by combining (11) and (12), we can majorize (7) as follows

min g({Am}% )+h(@)+p

(A} (13)

where g, h, and ﬁ collect terms with {A,,}, @, and constants,
respectively.

Update for A,,: The update of A, form = 1,..., M in (13)
can be computed in closed form, which is obtained via setting
the partial gradient w.r.t. each element of A,, to zero:

K o' (w.9)Cpalq. )
n p.n
A;)T+1)(q’w)zz Z P>1n.q.Jj
nst (p,n)eR j,s=1 Hp
v 5 W)Cap ()2 )

Mp '

(14)

where the y, is chosen such that ITAE,ﬂ = 17. Note that the
indices in the first and second terms of (14) are reversed.

Update for ©@: The update for @ cannot be computed in closed
form, so we use a lightweight first-order method to minimize
h(0).Let @ =@ (7)) Then the sequence of iterates

6D = Projp (@™ — oW VRO ™)) (15)

converges, where u denotes the iteration index, ® = {X €
REXK : X >0, 17X1 = 1}and @™ > Ois step-size parameter
of the form o™ = a/y for some constant a > 0 [23]. Projection
operation Projg (@) onto the feasible set @ can be accomplished
easily by projecting a vectorized version of the argument ® onto
the (K2~ 1)-dimensional unit simplex defined by the convex hull
of the canonical basis vectors, conv{ey, ..., eg2}. Finally, the
optimization variable @ is updated with the converged value @*
of the sequence of iterates (15), i.e., e+ = §*.

BSUM Algorithm: It is straightforward to check that the
objective function in (13) satisfies the assumptions of the
BSUM method [21], and thus by alternating between updates of
{Af,f ) }%’: ,and @ (T) (with all other variables are held fixed) the
sequence of iterates will produce a stationary point of (7).

Remark: The work in [19] deals with a similar tri-factorization
problem in the context of topic modeling. However, their method
does not consider missing co-occurrences and also adopts a
computationally costly, second-order optimization procedure for
handling @ subproblem.



IV. NumMmEeRricaL EVALUATION

Settings: To demonstrate the effectiveness of the proposed
method, we consider a part-of-speech (POS) tagging exper-
iment, where M = 10 classifiers were trained using the
Natural Language Toolkit (NLTK) [24] on subsets of the Brown
coprus [25] to provide POS tags of text!. The number of
tags (classes) is K = 12 and the classifiers provided POS
tags for all words in the Penn Treebank corpus [26], which
contains 7 = 1,00, 676 words in 3, 914 sentences. The data is
randomly divided into 10 sets of roughly 391 sentences for cross-
validation, which amounts to approximately 10k words per set.
In each trial, the validation set is used to tune hyper-parameters,
while the remaining 90% of the data is used to for training/testing
(since the problem is unsupervised). The reported results are
the average of the 10-fold cross-validation. Each sample is only
labeled by two annotators and each annotator co-labels with only
two others.

Baselines: To highlight how temporal dependency affects
the results, the sequential methods have also been compared
with methods that assume i.i.d. samples. For all methods,
the estimated confusion matrices, label prior, and transition
matrix (in the case of sequential methods) are provided as
input along with the sentence indices and observed annotator
label sequences to the Viterbi algorithm, which returns a MAP
prediction of the label sequence {¥; thl [27]. As a baseline, we
compute the oracle PMFs by assuming either i.i.d. or sequential
samples. These two methods denoted as MAP-oracle(i.i.d.)
and MAP-oracle(sequential), respectively, represent the
best possible MAP predictions for the available annotations. The
i.i.d. methods considered include the MomentMatching [3], the
MultiSPA method [2], and the proposed VolMinCTF initialized
by the MultiSPA algorithm. The i.i.d. version of the proposed
method discards the transition matrix before running the Viterbi
algorithm. Including this comparison should provide intuition
as to whether the estimate of the transition matrix is reasonable,
if the data follows the Markov chain assumption. For sequential
methods, we include the two techniques from the work [13],
denoted as AO-ADMM and AO-ADMM+EM. We also include the
proposed method with MultiSPA initialization, and a version
where the output is further refined using the EM method via the
Baum-Welch algorithm [28].

Results: Results from the 10-fold cross-validation experiment
are shown in Table I. Notably, the difference between the oracle
PMFs when assuming i.i.d. samples or sequential samples ( i.e.,
MAP-oracle(i.i.d) versus MAP-oracle(sequential)) is
small, suggesting that the assumption of temporal dependence is
not strongly supported for this dataset. Nonetheless, we see that
the techniques that utilize the proposed VoIMinCTF are robust to
this potential model-mismatch and out-perform all other meth-
ods. In particular, the VoIMinCTF followed by EM refinement
(denoted as VolMinCTF+EM) provides the best label predictions,
with an accuracy only 5% below the sequential oracle method
MAP-oracle(sequential). In addition, one can note that all

1 Matlab code for the experiments is available at https://github.com/marrintp.
The data was generously provided by Traganitis and Giannakis [13].

TABLE I: Results of 10-fold cross validation on the POS
labeling experiment where 10 annotators each co-label with
2 other annotators, and only 2 annotators label each sample.

Method Accuracy F Precision Recall
MAP-oracle(i.i.d.) | 0.7797 |0.7675| 0.8424 |0.7060
MomentMatching 0.5052 | 0.4626 | 0.5148 |0.4216
MultiSPA 0.1530 | 0.1513 | 0.1636 |0.1423
VolMinCTF(i.i.d.) 0.6963 | 0.5802 | 0.6108 |0.5531
MAP-oracle(sequentid 0.7844 | 0.7707 | 0.8189 | 0.7281
AO-ADMM 0.4530 | 0.4212 | 0.4522 [0.3946
AO-ADMM+EM 0.4834 | 0.4535 | 0.4859 |0.4263
VolMinCTF 0.6973 | 0.5763 | 0.5965 |0.5580
VolMinCTF+EM 0.7306 | 0.6511 | 0.6796 |[0.6257

three techniques based on the VolMinCTF finish in the top three
positions in every category. Recall that we employ only two
annotators to label each sample and each annotator only labels
with two others in this simulation. Hence, these results illustrate
that the proposed approaches are well-suited for cases where
annotations are limited for each data sample. Other baselines
does not perform well under this challenging scenario. For
example, the MultiSPA method performs poorly, possibly due to
the small number of annotators co-labeling, which leads to low-
quality estimates of pairwise co-occurrence matrices. Despite
the low-accuracy of these estimates, the Mul tiSPA method still
provides a reasonable initialization for VolMinCTF. Finally, as
expected, the MomentMatching, AO-ADMM, and AO-ADMM+EM
methods all suffer from the lack third-order statistics [13], even
with the EM refinement.

V. CONCLUSION

Integrating noisy crowdsourced annotations to produce high-
quality labels is a crucial bottleneck in training large-scale
supervised machine learning algorithms. In this work we
proposed a crowdsourcing technique using the DS-HMM
paradigm to exploit temporal dependence in sequential data. The
VoIMinCTF is a one-stage approach that provides high-quality
sample-efficient MAP estimates of the labels, relying only on
second-order statistics. The numerical evaluations provide a
proof-of-concept and demonstrate that the proposed method can
outperform existing techniques. The VoIMinCTF has the added
benefit of being able to recover the latent parameters of the
DS-HMM with incomplete knowledge of the CSCO matrices,
which means that not all annotators need to label all samples or
with all other annotators. Future work will make the relationship
between annotator workload and identifiability explicit.
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