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ABSTRACT

Deep correlation-based multiview representation learning tech-
niques have become increasingly popular methods for extract-
ing highly correlated representations from multiview data.
However, their ability to find highly complex mappings be-
tween the views can also lead to overfitting and overly corre-
lated representations. In this work, we propose a regularizer
for this specific problem, based on the Rademacher complexity
of the DNNs, tailored for multiview correlation maximization.
We demonstrate that the proposed regularization leads to less
noisy representations in synthetic data and improved perfor-
mance of downstream tasks in real-world multiview datasets.

Index Terms— Neural network complexity, deep canoni-
cal correlation analysis, overfitting, unsupervised learning

1. INTRODUCTION

Canonical correlation analysis (CCA) and its extensions [1, 2]
are widely used for multiview representation learning (MRL)
in many applications [3, 4, 5] for distilling meaningful low-
dimensional representations from high-dimensional data by
exploiting the joint information contained in multiple views
of an object or phenomenon [6]. This popularity is due to
the fact that CCA provides a simple yet effective solution for
learning shared or correlated representations from two views
while discarding the information present in only one of the
views. However, the simplicity comes with a cost. Since CCA
mappings are linear, it is not effective in applications where
the views are connected by nonlinear relationships [7].

CCA can be generalized using kernel methods [8, 9] or
deep neural networks (DNNs) [10]. DNN-based methods
like deep CCA (DCCA) have the advantage of approximat-
ing nonlinear functions in a data-driven manner and are not
restricted to a particular class of nonlinearities, compared to
kernel methods. However, relaxing the linear model intro-
duces new challenges, such as the possibility of identifying
non-existent relationships between the views. The more com-
plex a mapping is allowed to be, the more prone it is to over-
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fitting [11, 12]. Some further extensions of DCCA address
this issue indirectly by extending the networks to autoencoders
[11] and restricting the class of allowable mappings to make
representations identifiable [13]. However, neither of these
methods explicitly prevents learning overly complex mappings
to maximize correlated representations, especially when the
two views are heterogeneous [12].

In this work, we propose a regularization term for DNNs
used in deep correlation maximization using an upper bound
on the Rademacher complexity (RC) of those networks. By
definition, RC measures the ability of a network to fit random
noise, and it is the fitting of this noise that allows the networks
to learn subspaces that are overly correlated [14]. Inspired
by the upper bound for the RC of a DNN for a supervised
task [15], we propose a regularization term for the given
unsupervised multiview problem which combines the RC up-
per bounds of multiple networks and penalizes the K largest
weights of each layer in a neural network. We demonstrate its
advantages with both synthetic and real-world multiview data.

2. BACKGROUND AND RELATED WORK

Let x(m) ∈ RNx and y(m) ∈ RNy be an observation from
View 1 and View 2, respectively, where Nx and Ny denote the
dimensions of the observations. The M paired observations
from each view form the columns of data matrices, X =
[x(1), . . . ,x(M)] and Y = [y(1), . . . ,y(M)]. Suppose that
a nonlinear mapping of a fully connected neural network, f ,
consists of L fully connected layers. If the l-th layer has J (l)

neurons, then each layer will have an associated set of weights,
W(l) ∈ RJ(l−1)×J(l)

. We denote the full set of weights by
W = {W(1), ...,W(L)}.

2.1. Correlation analysis-based MRL techniques

2.1.1. Deep canonical correlation analysis (DCCA)

Given data matrices X and Y, the goal of DCCA is to learn as-
sociated linear mappings, Ax ∈ RDx×Dx and Ay ∈ RDy×Dy ,
with Dx and Dy denoting the dimensions of the latent space,
as well as nonlinear mappings, fx : RNx → RDx and fy :
RNy → RDy , without supervision such that the correlation



between the mapped representations Zx = Axfx(X), Zy =
Ayfy(Y) is maximized. DCCA then solves the problem

argmax
Ax,Ay,fx,fy

trace
(
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y

)
(1)
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y is diagonal. (4)

In DCCA, fx and fy are designed using two separate neural
networks [10], and Problem (1) is typically solved iteratively
using either full-batch optimization algorithms [10] or stochas-
tic gradient descent with mini-batches [16].

2.1.2. Canonical correlation analysis (CCA)

If fx and fy are both restricted to be identity functions, (1) to
(4) describe the problem of CCA, which finds linear mappings,
Ax and Ay, such that the correlation between the representa-
tions Zx = AxX and Zy = AyY is maximized. It is well-
known that this can be solved algebraically via the singular
value decomposition (SVD) [1].

2.1.3. Deep canonical correlated autoencoders (DCCAE)

What distinguishes DCCAE from prior works is the inclusion
of an autoencoder regularization [11]. Let gx : RDx → RNx

and gy : RDy → RNy denote decoder functions to be learned
by the network. The autoencoder regularization term for each
view is the mean-squared reconstruction error between the
input and the decoded outputs. The term for View 1 is

RegAE(X, fx,gx) = λ 1
M

∑M
m=1

(
x(m)− gx

(
fx
(
x(m)

)))2

, (5)

where λ is a hyper-parameter and the term for View 2 is defined
analogously. The DCCAE objective is the DCCA objective in
(1) minus the autoencoder regularization for each view.

2.1.4. Identifiable DCCAE (IDCCAE)

DCCA and DCCAE are data-driven frameworks that do not
provide theoretical guarantees for recovering the shared com-
ponents in general. However, [13] was able to show that the
solution of DCCAE is identifiable, i.e. we can provably recover
the range space of the shared data sources up to an affine shift,
if some weak assumptions about the data-generating model
are satisfied. The proof requires the data to be generated by a
Post-Nonlinear Mixing (PNL) model, the non-linearities to be
applied channel-wise, and the shared data sources to be exactly
common. Further, [13] also assumes that the learned functions
fx, fy , gx, and gy must be channelwise nonlinear mappings.

2.2. Empirical Rademacher Complexity (RC)

RC reports the complexity of a class of functions by measuring
its ability to fit random noise [14]. The better a class can match
random noise, the more complex it is. Let Γ be a sample space
and M = {γ1, ...,γS} a set of drawn samples. Further, let H
be a set of real-valued functions, such that h ∈ H : Γ 7→ R
and let σ = (σ1, ..., σS) be i.i.d. random variables, uniformly
chosen from {−1, 1}S . Then, the empirical RC of H with
respect to M is defined as [17]

RM(H) := Eσ

[
suph∈H

1
S

∑S
s=1 σsh(γs)

]
. (6)

For a given set of samples M and Rademacher vector σ, the
supremum measures the maximum correlation between σs and
h(γs) over all h ∈ H. When H is rich enough, it contains
functions that can properly resemble all combinations of −1
and 1. By applying the expectation operator to σ we average
the ability of the function class H to fit random samples over
all possible sample combinations.

2.2.1. Rademacher Complexity Bound

The empirical RC in (6) is defined as the supremum across an
abstract class of functions, making it difficult to compute for
a specific neural network instance. However, a useful upper
bound on (6) is derived in [15], which can be computed for
a given neural network with respect to the input. Based on
that upper bound, the authors propose a regularization term
for supervised classification with c classes, where the neural
network employs Bernoulli dropout with a retain-rate of θ.
The regularization term proposed by [15] is

RegRCDrop(X,Wfx) = (
∏L

l=1 ∥θ(l−1)∥1/q
1 maxj ∥W(l)

fx
(:, j)∥p) · TX, (7)

where W(l)
fx
(:, j) denotes the jth column of W(l)

fx
, p ≥ 1 meets

1/p+ 1/q = 1 and TX = c2L
√

logNx

M ∥X∥max is constant with
∥X∥max = maxi,j |X(i, j)|. If we choose p = ∞ and q = 1,
as in [15], we have maxj ∥W(l)

fx
(:, j)∥p = ∥W(l)

fx
∥max.

3. RADEMACHER COMPLEXITY FOR DCCA

Training neural networks to maximize correlation without any
restriction on the class of allowable nonlinear mappings can
be a blessing and a curse in MRL. On one hand, unconstrained
networks have greater expressivity, but they may also learn
overly complex mappings to extract perfectly correlated rep-
resentations from the data, even when such representations
are spurious and do not match the true correlations of the un-
derlying signals [12, 13]. One natural strategy to discourage
DCCA-based methods from learning representations that are
overly correlated is to promote models that are as simple as
possible, but as complex as necessary. In this vein, we intro-
duce a multiview-specific regularization term that penalizes



the complexity of the mapping during training. Recall that RC
measures the ability of a network to fit random noise – the
proposed regularization penalizes this complexity explicitly.
The inherent assumption is that if a minor gain in correlation
leads to a disproportionate increase in network complexity, it
may be an indication of overfitting, which is undesirable.

3.1. MV Regularization With Rademacher Complexity

The regularization term introduced in [15] is not directly ap-
plicable to MRL, so we propose a modification. First, MRL is
an unsupervised task so the number of classes in the constant
term TX can be neglected because c = 1. Second, dropout
is a common way to prevent overfitting [18], but it acts quite
differently from norm-based regularizers by randomly deacti-
vating neurons of a layer during each training step. This type
of architecture-affecting regularization is complementary to all
norm-based techniques. Therefore, in this work, the retain-rate
is set to θ = 1 to remove the impact of dropout and focus on
the effect of regularizing the Rademacher complexity directly.
As a result, (7) can be rewritten as

RegRC(X,Wfx) = (
∏L

l=1 ∥W
(l)
fx
∥max) · TX, (8)

with TX = 2L
√

logNx

M ∥X∥max, and can be interpreted as the
product of the largest weight of each layer.

Regularizing just one weight from each layer of a network
can be ineffective for layers with hundreds of neurons because
very few neurons will be affected during training. We extend
(8) by regularizing K elements from each layer, with K as a
hyperparameter. To choose the K elements to regularize in
layer l, we first find the largest magnitude element in each col-
umn of W(l)

fx
and choose the K largest from that set. To ensure

that the regularizer is still an upper bound for the RC of the
neural network, we take the sum of those K largest elements.
Let ∥W(l)

fx
∥top-K denote the sum of the K largest magnitude

elements from the columns of W(l)
fx

. The regularization term
for a single view of the multiview network is

RegRCTK(X,Wfx) = (
∏L

l=1 ∥W
(l)
fx
∥top-K) · TX (9)

where TX is defined as before. In MRL, a network is trained
for each view and requires its own regularization term. The
proposed multiview RC regularization term is written as the
product of all the terms for each view,

RegRCMV(X,Y,Wfx ,Wfy ) = RegRCTK(X,Wfx) · RegRCTK(Y,Wfy ). (10)

4. EXPERIMENTAL RESULTS

In this section, we show that including the proposed regu-
larization term in (10) improves the performance of existing
DCCA-based techniques on synthetic and real-world datasets.
The prefix “Core” will be used to denote a method that uses
the ‘complexity-regularization’ from (10) in addition to the
baseline regularization.

ρ CCA DCCA DCCAE CoreDCCAE IDCCAE CoreIDCCAE
0.9 0.342 0.243 0.319 0.287 0.009 0.012
0.7 0.353 0.676 0.443 0.321 0.021 0.029
0.5 0.410 0.749 0.456 0.386 0.065 0.044
0.3 0.579 0.865 0.655 0.489 0.311 0.251

Table 1: Average distance between ground truth subspaces and es-
timated representations for all techniques along with the proposed
CoreDCCAE and CoreIDCCAE.
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Fig. 1: Comparison of complexity estimates during training of unreg-
ularized DCCA and DCCAE. Measurements were normalized to be
in [0, 1] and the gradient w.r.t the course of training is shown.

4.1. Synthetic Data

For the synthetic experiment, we generate the data from an
identifiable model1 [13]. Since these subspaces are known,
we can assess the accuracy of the learned representations by
measuring the distance between the ground truth and estimated
subspaces as 1 minus the cosine of the largest principal angle
separating the subspaces [19]. The reported number for each
method is the distance to the ground truth averaged across
both views. Table 1 shows the performance of the techniques
for different values of correlation coefficient ρ. We expect all
methods to perform best (lowest average distance) when ρ is
high because the two views share more information. When
the ρ is low we expect to see improvements from including
the proposed complexity regularization because the unregu-
larized methods will tend to overfit. Of the unregularized
methods, IDCCAE produces the lowest average distances to
the ground truth. This is expected because the model assump-
tions of IDCCAE are satisfied by our synthetic data. Both
of the ‘Core’ methods show significant improvements over
their unregularized counterparts when ρ = 0.3 and ρ = 0.5,
and CoreDCCAE outperforms DCCAE for all ρ values 2. For
smaller values of ρ, traditional techniques overfit more and the
benefit of including the regularization is more pronounced.

4.2. Overfitting-Sensitivity of Complexity Estimates

To motivate the use of the RC in the proposed regularization
term, we compare the sensitivity to overfitting of (9) with the
L1-norm and L2-norm. We train (unregularized) networks for

1Code at: github.com/SSTGroup/RademacherRegCorrelationMRL
2We omit regularization results with DCCA since its autoencoder exten-

sions have demonstrated comparable or superior performance, consistent with
our observations.



DCCA and DCCAE using the before-mentioned synthetic data
with known ground truth. For each network, we compute the
estimates of complexity from the network parameters at each
epoch of training. The estimates are independently normalized
to the range [0, 1]. Fig. 1 plots the rate of change (RoC) of
these complexity estimates as a function of the training epoch.

As we know the true subspace for synthetic data, we can
estimate where overfitting starts, as the epoch when the dis-
tance to the ground truth is minimized and then begins to
increase. All methods start overfitting at around the 500th
epoch. Thus, we expect to see the complexity estimates in-
crease more rapidly as the networks begin to fit the noise.
The RoC for the L1 and L2-norms converge to small values,
indicating that they do not increase at a greater rate due to
overfitting. In contrast, the RoC for the RC bound increases
throughout training, consistent with the process of learning
complex representations. This indicates that the proposed RC
regularization is more sensitive in this context.

For the remainder, L2-norm regularization is used as the
baseline for comparison because the L1-norm is less sensitive
to the investigated overfitting. We also omit IDCCAE in real
data experiments due to the substantial computational burden
of creating channel-wise networks for each input dimension.

4.3. Occluded Multiview MNIST

In this investigation, we use the well-known MNIST dataset
[20] consisting of 28 × 28 pixel gray-scale images of hand-
written digits. We construct a synthetic two-view version
of the MNIST dataset by building image pairs of the same
class [11]. We expect the CCA-based techniques to discover
learned representations that represent the digit present in both
images. To design views that are not perfectly correlated, we
modify the two MNIST views by adding spatter augmentation
[21] and adding a variable number of white boxes on top. We
follow the preprocessing steps proposed in [12].

To evaluate the learned representations we cluster the pro-
jected views into ten clusters each using spectral clustering
[22]. We use the tuning set to select the hyperparameters of
all competitors3. For early stopping, we monitor the smoothed
clustering accuracy of the first view and select the configura-
tion with the best performance. We report the performance on
test data, averaged over five runs. Table 2 shows the clustering
accuracy for raw data, the single-view approach using principal
component analysis (PCA), and the multiview techniques.

We expect the boxes to impair the spectral clustering accu-
racy, as the noise can be falsely taken as relevant for correlation
by the encoder. This expectation is confirmed by the results,
as the accuracy degrades when more boxes are present in the
images. When comparing the results we can see that DCCA
and DCCAE perform similarly, with a slight edge for DCCAE.
Depending on the number of boxes, CoreDCCAE performs on

3For details on the fully connected neural networks and hyperparameters,
see the provided code.

# Raw PCA CCA DCCA DCCAE CoreDCCAE
0 70.2% 70.7% 84.8% 95.6% 96.7% 96.6%
1 50.3% 51.4% 71.2% 86.9% 87.0% 88.7%
2 34.5% 38.1% 66.0% 76.7% 77.0% 81.1%

Table 2: Spectral clustering accuracy comparison of the different
methods for the occluded multiview MNIST datasets.

Raw PCA CCA DCCA DCCAE CoreDCCAE
43.0% 42.9% 42.9% 57.9% 58.0% 59.8%

Table 3: SVM accuracy comparison for the XRMB dataset.

par or better than the other methods. It is striking that the gap
between CoreDCCAE and DCCAE gets larger as more noise,
i.e., the number of boxes, is present in the images. This sup-
ports our hypothesis that the other methods overfit significantly
despite being regularized by L2-norm, and that penalizing the
RC bound benefits the clustering accuracy.

4.4. X-Ray Microbeam (XRMB) Database

Now we investigate the Wisconsin X-Ray Microbeam (XRMB)
database [23]. It consists of acoustic speech recordings and
concurrently recorded articulatory measurements. For further
details of the dataset see [23]. Previous work has shown that
this second view improves phonetic recognition performance
compared to audio-only approaches [24]. In contrast to the
previous datasets, these two views are more complementary
and heterogeneous, as we combine audio and image data. Thus,
the shared information between the two views may not be
identical and, therefore, is more prone to overfitting.

We again use the tuning set to select the hyperparameters
of all competitors. We evaluate the learned representations
via linear support vector classification [25]. For Rademacher
regularization, we considered the K = 20 largest values. Re-
sults on the test data are shown in Table 3. The effect seen in
the previous experiment persists for this dataset, and CoreDC-
CAE outperforms both DCCA and DCCAE, reinforcing the
idea that complex, overly correlated representations are less
meaningful for real, heterogeneous data, and the proposed
regularizer improves the classification performance.

5. CONCLUSION

State-of-the-art correlation-based MRL methods are designed
to discover complex nonlinear mappings, which can lead
to overfitting, especially when dealing with heterogeneous
views. We proposed a multiview regularization term, based
on Rademacher complexity, that penalizes overly complex
mappings. Synthetic experiments show that comparable norm-
based regularizers are relatively insensitive to this type of
overfitting. Further, experiments on real-world multiview data
demonstrate the occurrence of overfitting when data is truly
heterogeneous and that the methods produce more meaningful
representations when using the proposed regularizer. An in-
depth analysis regarding the effect of K and the performance
in combination with dropout is left for future work.
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