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ABSTRACT

Deep canonical correlation analysis (DCCA) is often applied
to paired data samples from diverse sources to extract mean-
ingful common information. However, when the data sources
are heterogeneous, some of the useful information may be
complementary but not exactly common. In spite of this fact,
existing techniques learn maximally correlated representa-
tions from multiple views and are formulated so that they
aim to yield identical latent subspaces for each view. This
approach is sub-optimal in estimating the true signal sub-
spaces for heterogeneous data sources. We propose a residual
relaxation for deep canonical correlation analysis (RDCCA)
based on a subspace distance metric, which generalizes the
existing problem formulation and extracts representations
that are better estimates of the actual, non-identical sub-
spaces. We demonstrate that when using such a relaxation,
the learned representations are closer to the true ones and
that RDCCA outperforms CCA and DCCA in scenarios with
heterogeneous data.

Index Terms— Deep canonical correlation analysis,
Residual relaxation, Grassmann manifolds, Unsupervised
learning, Multiview representation learning

1. INTRODUCTION

Multiview representation learning (MRL) is concerned with
learning meaningful, compact representations from high-
dimensional multiview data. The idea is that multiple views
observing the same object or phenomenon contain shared in-
formation. We can then extract this information by analyzing
those views jointly [1]. In the example of a video, we can
understand the observed scene better when interpreting audio
and visual data at the same time compared to considering
either modality alone. With more and more multiview data
being available through smart sensors and IoT devices, MRL
strategies attract increasing attention.

Canonical correlation analysis (CCA) and its extensions
[2, 3] are commonly used for unsupervised MRL problems
and have been shown to perform well in many applications
[4, 5]. One reason for the popularity of CCA is the lightweight
and, at the same time, capable algorithm. It can extract the set

of correlated representations from two views. At the same
time, it neglects private information, which is present in only
one of the views. However, the method has one significant
limitation: it can only learn linear mappings and is, therefore,
ineffective in settings where nonlinear relationships exist be-
tween the views [6].

Using neural networks is a widespread practice to gen-
eralize CCA for nonlinear relationships, yielding deep CCA
(DCCA) [7]. This data-driven approach has the advantage of
being scalable and not restricted to a particular class of non-
linearities [8]. Depending on the architecture and size of the
neural networks, we can use them to learn highly complex
nonlinearities.

The typical assumption in CCA (and subsequently DCCA)
is that the correlation between the underlying signals is un-
known and that identifying representations that are maximally
correlated will reveal the true latent signals [3]. This assump-
tion is reasonable when the data generation processes are
homogeneous. For example, if samples from the two views
are photographs taken by identical cameras with slightly dif-
ferent vantage points of the same scene, we would expect
their images to be highly correlated. However, the assump-
tion may not hold, for example, if the view of one camera is
partly obstructed or if the views represent different modali-
ties [9]. In the presence of heterogeneous data or structured
interference, we expect the correlation between latent repre-
sentations of these two ‘views’ to be less than one. Due to
the expressive power of neural networks as universal function
approximators [10], it is possible for DCCA to learn latent
representations that are more highly correlated than the true
signals. This type of overfitting leads to poor estimation of
the signals and can be a barrier to any downstream tasks for
which the latent representations are used.

Many previous attempts to improve the estimation of sig-
nal subspaces for heterogeneous data have tried to indirectly
prevent over-correlated representations by encouraging neu-
ral networks to learn simple functions. This has been done
by including regularization terms that limit network capac-
ity [11], by using autoencoders to enforce invertibility [8],
or by including independence constraints on the latent repre-
sentations [12]. Wang et al. tried to address the problem of
over-correlation with a residual relaxation technique for data
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augmentation [13]. However, this technique focuses on in-
dividual samples and essentially learns a fuzzy mapping to
within a neighborhood of the latent representation of the orig-
inal unaugmented training sample.

In this work, we directly address the problem of learn-
ing over-correlated signal subspaces at its core. We modify
the optimization problem, such that the partly-correlated sub-
spaces are the target of the optimization, instead of just re-
stricting the method implicitly and hindering the optimizer to
reach perfectly-correlated subspaces. We do this by propos-
ing a generalization of the DCCA objective function that al-
lows for a nonzero residual between the learned subspaces.
The residual relaxation accounts for the possibility of intrin-
sic differences between the signal subspaces associated with
different views. This difference is measured using a subspace
distance known as the chordal distance, and tools from Rie-
mannian geometry allow us to constrain the learned repre-
sentations to be correlated but not identical. We show that the
residual relaxation leads to better subspace estimation and im-
proved downstream clustering accuracy than CCA or DCCA.

2. BACKGROUND AND RELATED WORK

Let x(q)
m ∈ RN be an observation from View q = 1, 2, where

N denotes the dimensions of the observations. The M paired
observations from each view form the columns of data matri-
ces, X(q) = [x

(q)
1 , . . . ,x

(q)
M ].

2.1. Canonical correlation analysis (CCA)

Given data matrices X(1) and X(2), the goal of CCA is
to learn linear mappings, A(1),A(2) ∈ RN×N , such that
the mapped representations, Z(1) = A(1)X(1) and Z(2) =
A(2)X(2) are maximally correlated. The whole process hap-
pens in a completely unsupervised manner. The CCA solution
is obtained by solving the following optimization problem,

argmax
A(1),A(2)

trace
(

1

M
A(1)X(1)X(2)⊤A(2)⊤

)
(1)

such that
1

M
A(q)X(q)X(q)⊤A(q)⊤ = I, (2)

1

M
A(1)X(1)X(2)⊤A(2)⊤ is diagonal (3)

for q = 1, 2. It is well-known that we can solve this problem
algebraically via the singular value decomposition (SVD) [2].
Consider the matrix

C(1,2) =
(
X(1)X(1)⊤)− 1

2X(1)X(2)⊤(X(2)X(2)⊤)− 1
2 ,

and let PDQ⊤ = C(1,2) be the associated SVD. The solution
to (1) can then be written as

A(1) = P⊤( 1

M
X(1)X(1)⊤)− 1

2 ,

A(2) = Q⊤( 1

M
X(2)X(2)⊤)− 1

2 .

2.2. Deep CCA (DCCA)

In order to extract nonlinear relationships between X(1) and
X(2), DCCA extends the correlation maximization frame-
work from CCA by additionally learning two nonlinear map-
pings, f (1) : RN → RK and f (2) : RN → RK , such that
Z(1) = A(1)f (1)(X(1)), Z(2) = A(2)f (2)(X(2)) are max-
imally correlated, now with A(1),A(2) ∈ RK×K . DCCA
then solves the problem

argmax
A(q),f (q)

trace
(

1

M
A(1)f (1)(X(1))f (2)(X(2))⊤A(2)⊤

)
(4)

such that
1

M
A(q)f (q)(X(q))f (q)(X(q))⊤A(q)⊤ = I, (5)

1

M
A(1)f (1)(X(1))f (2)(X(2))⊤A(2)⊤ is diagonal

(6)

for q = 1, 2. In DCCA, we use two separate neural networks
to learn f (1) and f (2) [7]. However, due to the non-trivial
learning of the parameters of f (1) and f (2), the solution to (4)
cannot be obtained in a closed form like that of CCA. Instead
Problem (4) is typically solved iteratively using either full-
batch optimization algorithms or stochastic gradient descent
with mini-batches.

2.3. Reformulation of DCCA optimization

At optimality, the representations which maximize correlation
are the same as those which minimize the Euclidean distance
between the projections Z(1) and Z(2). Therefore, Problem
(4) can be reformulated according to [14] as

argmin
A(q),f (q)

∥∥∥A(1)f (1)(X(1))−A(2)f (2)(X(2))
∥∥∥2
2

(7)

such that (5) and (6),

which can be equivalently written by introducing a slack vari-
able, U, as:

argmin
A(q),f (q),U

2∑
q=1

∥∥∥U−A(q)f (q)(X(q))
∥∥∥2
2

(8)

such that
1

M
UU⊤ = I, (9)

1

M
U1 = 0, (10)

where 1 denotes an all-one vector. The slack variable, U,
represents the extracted shared components and, ideally, is
equal to the truly shared components. This distance-based re-
formulation of the correlation maximization problem has the
advantage of being solvable by a lightweight algorithm [12].
In this reformulation, (9) is analogous to (5), and (10) ensures
that the extracted latent components are zero-mean.



3. DCCA OPTIMIZATION PROBLEM WITH
RESIDUAL

The optimization problems presented above are designed so
that the projections Z(1) and Z(2) are maximally correlated.
However, for heterogeneous data which is not perfectly cor-
related, the solution to Problem (8) may not approximate
the true signal subspaces, as the maximally correlated sub-
spaces are not good estimates of the true, partly-correlated
subspaces. To address this misalignment, we generalize
the DCCA optimization problem so that the correlation be-
tween the optimal subspaces is controlled by a parameter,
which is equivalent to learning subspaces that are a fixed
distance apart. Let G and H be K ×M matrices that con-
tain samples from two sets of zero-mean, unit variance ran-
dom vectors. Let c = [c1, c2, . . . , cK ]⊤ be the vector of
canonical correlations between G and H. We denote by

dchord(G,H) =
√

1
K

∑K
k=1 1− c2k, the normalized chordal

distance between the rowspaces of G and H.
To prevent the learned subspaces from being overly cor-

related, the single slack variable in Equation (8) is replaced
by view-specific slack variables, U(1) and U(2), which are
constrained to be separated by a given chordal distance. Then
minimizing the subspace distance between A(q)f (q)(X(q))
and U(q) for each q, while maintaining a fixed distances
between U(1) and U(2), avoids over-correlation between
Z(1) and Z(2). Consider the following residual relaxation of
Problem (8) with two slack variables:

argmin
A(q),f (q),U(q)

2∑
q=1

dchord(U
(q),A(q)f (q)(X(q))) (11)

such that dchord(U
(1),U(2)) = r (12)

dchord(U,U(1)) = dchord(U,U(2)) (13)

U = argmin
U

2∑
q=1

dchord(U,A(q)f (q)(X(q))) (14)

1

M
UU⊤ = I,

1

M
U(q)U(q)⊤ = I, (15)

1

M
U1 = 0,

1

M
U(q)1 = 0 (16)

for q = 1, 2.
Finding transformations that minimize the chordal dis-

tance between two sets of data is equivalent to finding trans-
formations that maximize the correlation between the result-
ing representations [15, 16]. Thus, the major difference be-
tween Problem (8) and Problem (11) is the inclusion of view-
specific slack variables and the constraint in Equation (12),
which requires these subspaces to remain a fixed distance
apart. Constraint (13) implies that U(1) and U(2) must also
be equidistant from U. The question then becomes, how can
we enforce this constraint? The answer requires tools from
the Grassmann manifold, whose points can be parameterized

subspaces of a fixed dimension. Since the chordal distance is
invariant to the choice of basis for the row spaces of its argu-
ments, we can identify U,U(q), and A(q)f (q)(X(q)) with the
linear subspaces spanned by their rows.

4. SUBSPACE DISTANCE REGULARIZATION

For fixed values of A(q) and f (q) for q = 1, 2, we can com-
pute the slack variable, U, that solves (14). In order to define
each view-specific slack variable, U(q), we need to find a ma-
trix whose row space lies on the shortest path between U and
A(q)f (q)(X(q)), with the chordal distance of U(1) from U(2)

being r and both U(q) having the same chordal distance from
U. This path of shortest distance is referred to as a geodesic,
and points along a geodesic can be computed on a Grassmann
manifold using the exponential and logarithmic maps.

4.1. Geodesic on Grassmann manifolds

Since we are interested in the rank-K subspaces spanned by
the signals, it is natural to represent these subspaces as points
on a Grassmann manifold, that is, the set of all K-dimensional
subspaces of RM , denoted Gr(K,M). Let G ∈ Gr(K,M)
be represented by a K ×M slice of an orthonormal matrix
whose row space spans G. Given a tangent vector, Y ∈
TG ⊆ RK×M , and a scale parameter t ≥ 0, we can compute
a geodesic retraction in the direction of Y using the exponen-
tial map, ExpG : TG → Gr(K,M) defined as

Exp
G

(Y , t) = P cos(tD)P⊤G+P sin(tD)Q⊤, (17)

where PDQ⊤ is the ‘econ’ SVD of Y . Furthermore, for H ∈
Gr(K,M) within a neighborhood of G, we can compute a
vector in the tangent space of G in the direction of H using
the logarithmic map, LogG : Gr(K,M) → TG, which is
defined by

Log
G

(H) = PEQ⊤ (18)

where PDQ⊤ is the ‘econ’ SVD of (HG⊤)−1H(I−G⊤G)
and E = arctan(D). If t ∈ [0, 1] and Y = LogG(H), the
point ExpG(Y , t) will be a point on the geodesic between G
and H. Further details on Grassmannian geometry and opti-
mization can be found in the following references [17, 18]1.

4.2. Proposed RDCCA Algorithm

We propose a block coordinate descent (BCD)-based algo-
rithm to solve the optimization problem in (11). Algorithm
1 consists of two loops, iteratively solving two objective
functions sequentially. In the outer loop, the view-specific
slack variables U

(q)
τ are computed for timestep τ . This

1The notation in this paper reflects the fact that our signal subspaces are
represented by the row spaces of the matrices, which is nonstandard in Rie-
mannian geometry literature.



is done by computing the current learned representations
Z

(q)
τ = A

(q)
τ f

(q)
τ (X(q)), orthonormalizing them, yielding

Z
(q)
τ,orth, and computing Uτ by solving problem (14) via the

SVD in (line 6). We then compute U(q)
τ by moving Uτ along

the geodesic to Z
(q)
τ,orth with the exponential and logarithmic

maps, using (17) and (18). The scale parameter, t, is com-
puted via line search such that the resulting chordal distance
between U

(1)
τ and U

(2)
τ equals the desired residual (line 7).

In the inner loop, we compute the chordal distance be-
tween the orthonormal projections and the slack variables,
dchord(U

(q)
τ ,Z

(q)
τ,s,orth), to update the linear and nonlinear map-

pings f
(q)
τ,s+1 and A

(q)
τ,s+1 via gradient backpropagation (line

14 & 15). The representations have to be orthonormal to be
on the same manifold as U(q)

τ . Therefore, we always do an or-
thonormalization of the projections via the Procrustes method
(line 12).

Algorithm 1 RDCCA

Require: Data X(q), K and target residual r.
1: τ ← 1;
2: Initialize f

(q)
τ randomly and A

(q)
τ ← I;

3: while stopping criterion is not reached do
4: Z

(q)
τ ← A

(q)
τ f

(q)
τ (X(q));

5: Z
(q)
τ,orth ← PQ⊤, PDQ⊤ = Z

(q)
τ ;

6: Uτ ← first K rows of Q⊤, where
PDQ⊤ = [Z(1)⊤

τ,orth,Z
(2)⊤

τ,orth]
⊤;

7: U
(q)
τ ← ExpUτ

(LogUτ
(Z

(q)
τ,orth), t), with

t such that dchord(U
(1)
τ ,U

(2)
τ ) = r;

8: s← 1;
9: f

(q)
τ,s ← f

(q)
τ , A(q)

τ,s ← A
(q)
τ ;

10: while stopping criterion is not reached do
11: Z

(q)
τ,s ← A

(q)
τ,sf

(q)
τ,s (X(q));

12: Z
(q)
τ,s,orth ← PQ⊤, PDQ⊤ = Z

(q)
τ,s;

13: lossτ,s ←
∑2

q=1 dchord(U
(q)
τ ,Z

(q)
τ,s,orth);

14: A
(q)
τ,s+1 ← backprop(A(q)

τ,s,∇A
(q)
τ,s

lossτ,s);

15: f
(q)
τ,s+1 ← backprop(f (q)τ,s ,∇f

(q)
τ,s

lossτ,s);
16: s← s+ 1;
17: end while
18: A

(q)
τ+1 = A

(q)
τ,s;

19: f
(q)
τ+1 = f

(q)
τ,s ;

20: τ ← τ + 1;
21: end while

5. EXPERIMENTS

In this section, we show that including residual relaxation
in the correlation maximization problem results in extracting
more meaningful representations for heterogeneous data us-

ing both synthetic and real datasets. When referring to the
proposed, residually relaxed method with a certain residual,
we include the residual in parentheses.

5.1. Synthetic Data

First, we compare the different methods on synthetic data
generated with a post-nonlinear (PNL) mixture model [19],
given as

X(q) = l(q)
(
Θ(q)S(q)

)
, (19)

where S(q) ∈ RK×M denotes the matrix containing the K
shared components from view q and Θ(q) ∈ RN×K is the
linear mixing matrix, assumed to be full rank and contain
all non-zero elements. The non-linear mixing is denoted as
l(q) =

[
l(q)(1)(·) · · · l(q)(N)(·)

]⊤
, encapsulating the N

scalar non-linear mixing functions l(q)(n)(·), each applied on
the n-th dimension of view q. For S(1) = S(2) = S, [12]
showed that (19) is identifiable, i.e., the signal subspaces can
be recovered by learning the nonlinear functions l(q). How-
ever, as we want to investigate data with shared subspaces that
are correlated but not identical, we consider correlated S(q).

Let S(1) and S(2) each contain K = 2 random vectors,
Gaussian distributed with a zero-mean and unit variance. The
correlation coefficient between the components of S(1) and
S(2) is 0.6. The matrices Θ(q) are randomly generated and
the non-linear mixings are as follows:

l(1)(n)(·) = 0.2 sigmoid(·) + (·)3, for n = 1, 2 (20)

l(2)(n)(·) = tanh(·) + 0.2 exp(·), for n = 1, 2. (21)

We generated2 M = 200 independent and identically dis-
tributed (i.i.d.) observations to obtain X(1) and X(2). As the
original subspaces S(1) and S(2) are known, we can evaluate
the extracted subspaces from the different methods by mea-
suring the distance between the ground truth subspace and
the extracted one for every view q, using

dist(Z(q),S(q)) = 1− c1 + c2
2

, (22)

where c1 and c2 denote canonical correlation values between
the rowspaces of the matrices Z(q) and S(q). We report the
distance measure averaged over both views,

Avg. distance =
1

2
(dist(Z(1),S(1))+dist(Z(2),S(2))). (23)

Both DCCA and RDCCA use fully connected networks with
two hidden layers with 256 neurons each and sigmoid activa-
tion. The final layer consists of two neurons with linear acti-
vation. Weights of the fully connected layers are regularized
via L2-regularization with a regularization parameter of 10−4

for DCCA and 10−6 for RDCCA. Table 1 compares CCA,

2Code available at: github.com/SSTGroup/GeodesicRelaxationDCCA



CCA DCCA RDCCA(.0) RDCCA(.5) RDCCA(.7) RDCCA(.8) RDCCA(.9)
Avg. distance 0.23 0.79 0.79 0.39 0.15 0.08 0.13

Avg. correlation 0.33 0.99 0.99 0.86 0.70 0.59 0.42

Table 1: Comparison of the average subspace distance between Z(q) and S(q) and the learned correlation between Z(1) and
Z(2) for CCA, DCCA and RRCCA for synthetic data. All results are averaged over five runs.

DCCA, and RDCCA with different residuals with respect to
the average subspace distance between Z(q) and S(q) and the
learned correlation between Z(1) and Z(2). Results are aver-
aged over five runs, and deep techniques are trained for 2000
epochs.

We can see that CCA is not able to well-extract the under-
lying subspaces as the correlation coefficients of the extracted
subspaces are smaller than the true value of 0.6. DCCA, on
the other hand, is able to find over complex representations,
as the extracted subspaces are nearly perfectly correlated. The
performance of RDCCA depends on the input residual value.
For a residual of 0, it performs similarly to DCCA. However,
for a residual of 0.8, which is the ground truth normalized
chordal distance for a correlation coefficient of 0.6, RDCCA
outperforms all other configurations by far with an average
correlation coefficient of 0.59 and a low average distance.
Even for non-optimal residual values like 0.5, 0.7, and 0.9,
RDCCA outperforms DCCA. We chose those values to show
that subspace extraction can be improved even without hitting
the optimal residual value. They all allow for more accurate
extraction of subspaces compared to the original DCCA.

5.2. Occluded Multiview MNIST

For the next investigation, we use the well-known MNIST
dataset [20], however, modified to have multiview data [8].
The original dataset consists of 28 × 28 pixel gray-scale im-
ages of handwritten digits. To every image in the set, we as-
sign another image from the same class. The matched image
acts as a second view, such that we have pairs of images of the
same digit. With no noise or interference, the only common
information in the images is the digit itself.

To make the two views heterogeneous, we add noise and
structural interference to the images. Thereby, we also en-
sure that the shared subspaces are not identical. We use the
available MNIST version with spatter noise [21] and add two
white boxes on top. Those boxes are placed randomly over the
images of both views and the height and width of the boxes
are sampled uniformly and independently from the interval
[0, 10]. An exemplary image pair can be seen in Figure 1.
Pixel values are normalized to [0, 1] and we split the data into
training, evaluation, and test sets with 50k, 10k, and 10k sam-
ples, respectively.

To evaluate the meaningfulness of the learned representa-
tions, we cluster them with the K-means algorithm [22] for
every view. We compute the clustering accuracy via major-
ity voting and average over both views. For RDCCA, we use

Fig. 1: An example image pair (class 0) from the occluded
multiview MNIST dataset with two boxes added.

CCA DCCA RDCCA(.6)
Avg. test accuracy 51.0% 73.1% 79.4%

Avg. training correlation 0.34 0.93 0.69

Table 2: Comparison of the K-means clustering accuracy
on the test data and the learned correlation between the ex-
tracted representations, Z(1) and Z(2), on the training data
for CCA, DCCA and RRCCA for the occluded multiview
MNIST dataset. All results are averaged over five runs.

the evaluation data to determine the residual that works best.
For both DCCA and RDCCA, we use neural networks with
five fully connected layers, each consisting of 1536 neurons
with sigmoid activation. The final layer consists of K = 15
neurons with linear activation. Both methods are regularized
via L2-regularization with a regularization parameter of 10−5.
We report the clustering accuracy on the test data, averaged
over five runs each.

Table 2 shows the comparison of K-means clustering ac-
curacy of CCA, DCCA, and RDCCA with a residual of 0.6,
chosen accordingly to accuracy on the evaluation data. We
can see that RDCCA clearly outperforms CCA and DCCA,
with more than 6% improvement over DCCA. When look-
ing at the averaged correlation coefficients between the two
K = 15 dimensional representations, Z(1) and Z(2), it stands
out that DCCA learned nearly perfectly correlated represen-
tations on the training data. This negatively affects the clus-
tering accuracy on the test data. Similarly to the synthetic
experiments, CCA just found a small correlation between the
representations and performed worst. RDCCA learned rep-
resentations that are correlated with an average correlation
coefficient of around 0.7. As the dataset is designed with
noise and structural interference, representations learned by
RDCCA are more meaningful and lead to better clustering
accuracy.



6. CONCLUSION

Current multiview learning methods of CCA and DCCA
aim to find maximally correlated representations. We pro-
pose a novel, residual relaxation-based optimization problem,
RDCCA, that generalizes the DCCA problem to aim for
partly-correlated, non-identical representations. Further, we
propose an iterative algorithm that learns those represen-
tations by computing view-specific slack variables on the
geodesic between a central slack variable and the learned
representations. Experiments with synthetic data, where we
know the ground truth subspace, show that RDCCA learns
better estimates of the underlying subspaces. Even for sub-
optimal residual values, RDCCA outperforms DCCA. On the
occluded multiview MNIST dataset, we showed that RDCCA
learns representations that lead to higher clustering accuracies
compared to CCA and DCCA.
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