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Abstract— In many applications, components correlated across
multiple data sets represent meaningful patterns and common-
alities. Estimates of these patterns can be improved when the
number of correlated components is known, but since data ex-
ploration often occurs in an unsupervised setting, the number of
correlated components is generally not known. In this paper, we
derive a generalized likelihood ratio test (GLRT) for estimating
the number of components correlated across multiple data sets. In
particular, we are concerned with the scenario where the number
of available samples is small. As a result of the small sample
support, correlation coefficients and other summary statistics are
significantly overestimated by traditional methods. The proposed
test combines linear dimensionality reduction with a GLRT
based on a measure of multiset correlation referred as the
generalized variance cost function (mCCA-GENVAR). By jointly
estimating the rank of the dimensionality reduction and the
number of correlated components, we are able to provide high-
accuracy estimates in the challenging sample-poor setting. These
advantages are illustrated in numerical experiments that compare
and contrast the proposed method with existing techniques.

Index Terms— GLRT, joint dimensionality reduction, mCCA-
GENVAR, model-order selection, multiple data sets, sample poor

I. INTRODUCTION

Multiset canonical correlation analysis (mCCA) is one of
the most common tools for analyzing second-order multivari-
ate association across multiple data sets [1]. The objective of
mCCA is to extract components that are maximally correlated
across two or more data sets. These extracted components have
been shown to provide meaningful representations of physical
processes such as brain activity patterns [2], autonomic ner-
vous system changes [3], and gene clusters [4], and are also
useful as features for image recognition in remote sensing [5]
and voice activity detection [6], to name a few.

An important parameter in the mCCA pipeline is the number
of components correlated across multiple sets. This number
affects both the performance and the interpretation of systems
that rely on mCCA. Estimating the number of correlated
components can be posed as a model-order selection (MOS)
problem. For two data sets, the MOS problem is well-defined.
This is not the case for more than two data sets where different
generalizations of model order are possible [7]. One of the
most common MOS problems is to estimate the number of
components correlated across all pairs of data sets [8]–[10].
However, this number ignores components that are correlated
across a subset of the collection of data sets, which is also of
interest in many fields [3], [11]. A more appropriate model
order in multiple data sets is the number of components
demonstrating correlation across all or a subset of data sets.
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This model order summarizes the complete set of correlations
and two different methods to estimate it are proposed in [12]
and [7]. The method proposed in [12] estimates the model
order in two steps by first computing the number of nonzero
correlations between each pair of data sets, and then jointly
computing the multiset correlation to estimate the structure of
these correlated components. The model order is then com-
puted as the number of rows with at least one nonzero corre-
lation in the estimated correlation structure. However, because
the method in [12] initially relies on pairwise comparisons, it
does not fully leverage the joint correlation information across
all data sets. As such, the estimated model order is sensitive to
inaccuracies in these pairwise comparisons when the number
of data sets is large. In contrast, the method in [7] estimates
the model order jointly from all available data sets, but it relies
on stronger assumptions about the correlation coefficients to
provably estimate the correct order. Moreover, neither [12] or
[7] explicitly addresses the challenges associated with small
sample support. When not enough samples are available, the
correlation coefficients between the extracted components are
highly overestimated [13]. This poses a major challenge in
mCCA and leads to inaccurate model-order estimates from
the above mentioned techniques.

In this work, we derive a generalized likelihood ratio (GLR)
as a function of the model order. We show the connection
between the derived GLR and a measure of multiset correlation
known as the generalized variance (GENVAR) criterion in [1].
We then apply the GLR in a sequence of binary hypothesis
tests to estimate the model order, and propose a novel way of
estimating the unknown distribution of the test statistic under
the null hypothesis. To tackle the small sample support issue,
we apply linear dimensionality reduction to all data sets such
that the model order and the rank of dimensionality reduction
are jointly estimated. This leads to a novel joint reduced-
rank mCCA (jRR-mCCA) technique where the reduced rank
retains components for estimating the correct model order
while excluding the undesirable uncorrelated components.

II. PROBLEM FORMULATION

We observe M independent and identically distributed
(i.i.d.) samples of P data sets, each modelled using real-valued
random vectors xp and generated by an unknown linear mixing
of a latent component vector, sp ∈ RN as

xp = Apsp, p = 1, 2, . . . , P, (1)

where Ap ∈ RN×N is an unknown but fixed mixing matrix
with full rank. For simplicity, we assume each data set is
of dimension N , however the results can be generalized in
a natural way to data sets of differing dimensions. Each
component vector, sp ∈ RN contains N Gaussian random
variables denoted by s

(n)
p , n = 1, . . . , N . It is common to

assume two kinds of association among the latent components:



A1. Intraset independence: components within each data set
are without loss of generality (w.l.o.g.) zero-mean, unit
variance and uncorrelated. The component covariance
matrix is

Rspsp = E[sps
>
p ] = I,

where E[·] is the expectation operator, superscript > is
the transpose and I is the identity matrix.

A2. Interset dependence: between any two data sets p and
q, components may be correlated only pairwise, i.e.,
component s(n)p may only correlate with component s(n)q
for 1 ≤ n ≤ N . This leads to a diagonal cross-covariance
matrix between the components of data sets p and q
(p 6= q), i.e.,

Rspsq = diag(ρ(1)pq , ρ
(2)
pq , . . . , ρ

(N)
pq ),

where ρ(n)pq represents the unknown (possibly zero) cor-
relation coefficient between their nth components.

Interset dependence (A2) is a common simplifying assumption
in the literature [14], [15]. It does not represent all possible
correlation structures, but it provides rather mild conditions
under which the multiset correlation structure is identifiable.

Let the model order be denoted by

D =
∣∣∣{n : ∃p, q for which ρ(n)pq 6= 0}

∣∣∣ .
In other words, D is the size of the index set of components
that demonstrate nonzero correlation between at least one pair
of data sets. The goal of this work is summarized as follows:

Goal: Given M i.i.d. samples jointly observed from
x1, . . . ,xP defined by the model in (1), estimate the model
order D.

III. GLRT USING MCCA-GENVAR
When working with sample limitations, MOS techniques

are well-suited for estimating the model order because they
balance the trade-off between overfitting and generalizability
[16]. In contrast, methods that employ heuristic user-defined
thresholds on the sample correlation coefficients or treat the
dimension as a hyper-parameter require careful tuning and are
not appropriate in general settings. In this section, we describe
the proposed method for estimating D based on a generalized
likelihood ratio test (GLRT), a common MOS technique.

A. Maximum Likelihood Function
Assumptions A1 and A2 imply that the covariance matrices

in model (1), Rpp = E[xpx
>
p ], are nonsingular. Denote the

inverse of the matrix square root by (·)− 1
2 . Then yp = R

− 1
2

pp xp
is a whitened version of the original data. The concatenation
of these whitened data vectors, y = [y>1 , . . . ,y

>
P ]
>, is

Gaussian distributed with zero-mean and covariance matrix
C = E[yy>]. Define R(n) ∈ RP×P to be the covariance
matrix of the nth components of each data set. That is, if
s(n) = [s

(n)
1 , . . . , s

(n)
P ]> then R(n) = E[s(n)s(n)>]. Let R̃ss

denote the block diagonal matrix,

R̃ss = blkdiag(R(1), . . . ,R(D), I), (2)

where I ∈ R(N−D)P×(N−D)P is an identity matrix. Then there
exists a permutation matrix, P, such that C can be written as

C = AP>R̃ssPA
> (3)

for A = blkdiag
(
(A1A

>
1 )
− 1

2A1, . . . , (APA
>
P )
− 1

2AP

)
[7].

Let y(m) denote the mth sample of y. The log-likelihood
for M i.i.d samples of y parametrized by C and D is

ln f (y(1), . . . ,y(M)|C, D) = K − M

2
ln det (C)

− 1

2

M∑
m=1

(
y>(m)C−1y(m)

)
,

where det(·) is the determinant of a matrix and the con-
stant K is independent of the parameter space C. If Y =
[y(1), . . . ,y(M)] is the matrix containing all M samples, then
the log-likelihood function can be written in light of (3) as

ln f (Y|C, D) ∝ −M2 ln
(det (A) det (P>) det (R̃ss)

det (A) det (P>)

)
− 1

2

∑M
m=1 tr

(
y(m)y>(m)C−1

)
,

where tr(·) is the trace of a matrix. By further decomposing the
expression with respect to (2), we can write the log-likelihood
as a function of the sum of the log-determinants of covariance
matrices for each of the components. That is,

ln f (Y|C, D) ∝ −M2
(
ln det (R(1)) + . . .+ ln det (R(D))

)
− 1

2

∑M
m=1 tr

(
y(m)y>(m)C−1

)
. (4)

The log-likelihood function is then maximized when the deter-
minant of each R(n) is minimized and when C is the sample
covariance matrix, Ĉ = 1

MYY>. We use the diacritical mark
ˆ to indicate when something is a sample estimate.

The GENVAR mCCA problem iteratively extracts compo-
nents from each data set such that the determinant of the
covariance matrix of these components is minimized [1].
The same components therefore maximize the log-likelihood
function in (4). Thus, the maximum log-likelihood function is

ln f
(
Y|Ĉ, D

)
∝ −M

2
ln
(
det (R̂(1)) . . . det (R̂(D))

)
, (5)

where R̂(n), for n = 1, . . . , D is the estimated covariance
matrix of the nth set of components obtained using mCCA-
GENVAR.

B. Binary Hypothesis Testing Framework

The maximum-likelihood function derived in (5) is used in
a hypothesis testing framework to estimate D as follows. A
sequence of binary hypothesis tests are performed one at a
time with a counter i starting at i = 0. The binary test of null
hypothesis H0 and alternative hypothesis H1 is defined as

H0 : D = i,

H1 : D > i.
(6)

If H0 is rejected, i is incremented and the next test of H0 vs.
H1 is run. The process is repeated until H0 is not rejected or
the maximum value of i is reached [17]. The GLR for the test
in (6) is

η(i) =
f(Y|Ĉ, D = i)

f(X|Ĉ, D > i)
,

where f(Y|Ĉ, D = i) and f(X|Ĉ, D > i) are the maximum
likelihood functions under H0 and H1, respectively. Under H1,
the parameter space i = N parametrizes all the possibilities



Fig. 1: Empirical estimate of g(i) for P = 6, N = 10, D = i = 3, and
M = 5000, computed for two different correlation structures a) components
correlated across only 2 data sets (solid curve) and b) components correlated
across all 6 data sets (dashed curve).

for D > i and achieves the maximum likelihood. Using (5),
η(i) can be simplified as

η(i) =
(
det (R̂(i+1)) . . . det (R̂(N))

)−M
2

. (7)

Consider the statistic T (i) = −2 ln η(i) based on the GLR.
Given a threshold, τ(i), D is estimated as the smallest value
i for which H0 is not rejected, i.e.,

D̂ = min
i=0,...,N−1

{i : T (i) < τ(i)}. (8)

If the asymptotic distribution of T (i) under the true H0 (i.e.,
when D = i) is independent of the unknown parameters, then
a threshold, τ(i), can be computed to ensure a fixed probability
of false alarm, Pfa, according to Wilks’ theorem [18].

C. Distribution of T (i) under H0

Let g(i) denote the asymptotic distribution of T (i) under
the true H0. For P = 2, g(i) is independent of unknown
parameters such as the correlation coefficients and the variance
of components. It depends only on the known parameters
N and i [17]. For P > 2, however, g(i) also depends on
the correlation structure of the correlated components. Fig. 1
illustrates the dependence of g(i) on the correlation structure
for an example where P = 6, N = 10, and D = i = 3. The
two curves in Fig. 1 are empirical estimates of g(i) computed
from 104 independent Monte Carlo trials. For each trial, T (i)
was estimated from M = 5000 samples, (which is much
larger than N ) to approximate the asymptotic distribution of
T (i). The difference in the two plots is that the solid curve
is obtained from data where components are correlated across
only 2 of the 6 sets, whereas the dashed curve is obtained
from components that are correlated across all 6 data sets.

Unless the correlation structure is known a priori, g(i) can-
not be accurately characterized as a function of only n, P, and
i. However, except in special cases [8], assuming a correlation
structure a priori is prohibitively restrictive in applications
where the data sets are heterogeneous and contain components
correlated with arbitrary correlation structure [3], [4], [19].
For the example shown in Fig. 1, when the components are
correlated with arbitrary correlation structure, g(i) will lie
in between the two extreme versions shown by the solid
and dashed curves. In this case, if the solid curve is used
as an approximation for g(i), the estimator in (8) tends to
overestimate the value of D. On the other hand, if the dashed
curve is used, (8) would tend to underestimate.

Obtaining an approximate distribution for g(i): To
provide a balance between over- and under- estimation, we
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Fig. 2: True (empirical) distribution g(i) and approximated distribution ĝ(i)
for P = 6, N = 10, D = i = 3 with a) M = 200 and b) M = 5000.

randomize the number of data sets across which each set of
components is correlated when estimating the distribution of
T (i). The parameters N and P are fixed for any given prob-
lem. Thus, for i specified by the current null hypothesis, an
approximate distribution, ĝ(i), is estimated for T (i) via Monte
Carlo trials. For a single trial, we generate P data sets, each
with M samples, N dimensions, and i correlated components.
The ιth set of components (ι = 1, . . . , i) is correlated across
q(ι) data sets where q(ι) is selected uniformly at random from
{2, 3, . . . , P}. The variance of all components is 1, as is each
nonzero correlation coefficient. The mixing matrices, Ap, are
orthogonal, and randomly sampled according to [20]. Thus,
each trial results in a sample of T (i), and ĝ(i) is the empirical
distribution obtained from these samples over multiple trials.

To illustrate the effectiveness of this approach, consider a
second example. The parameters remain the same as those
used for Fig. 1, except now the components are correlated
across 6, 4, and 2 data sets, respectively, with associated
correlation coefficients of 0.9, 0.8, and 0.7. The variance
of the correlated components is 2 and that of uncorrelated
components is 1. The empirical version of g(i) along with its
approximated distribution ĝ(i) are shown in Fig. 2 for two
sample sizes of a) M = 200 and b) M = 5000. We see that
ĝ(i) closely approximates g(i) in both cases irrespective of
the unknown parameters.

IV. JOINT REDUCED-RANK MCCA ESTIMATOR

Both the proposed estimator in (8) and the competing MOS
techniques assume M to be large relative to N . When M is of
the same order as, or smaller than, N , the sample correlation
coefficients are highly overestimated [13]. This overestimation
is especially pronounced for correlation coefficients that are
supposed to be zero, which leads to an inaccurate estimate of
η(i) in (7), and consequently an unreliable estimate of D. This
hurdle is particularly relevant because sample-poor scenarios
are common in many fields, often due to resource availability
or the cost of gathering samples. For example, in biomedicine
samples may refer to human subjects, which are limited
due to the number of participants in a given study [2]. In
oceanography, the samples might correspond to measurements
of a physical property like sea surface temperature which can
only be observed a few times per year or in a few locations
due to the cost of measurement collection [21].

When working with small M , a common practice is to
assume a low-rank generative model such that each data set
in (1) is generated from the product of a tall, skinny mixing
matrix Ap and low-rank component vector sp [22]. This means
that even though the dimension N is comparable to, or even
larger than, M , the number of components and D are both
still small relative to M . One reasonable procedure to tackle



small-sample support is to apply dimensionality reduction so
that the reduced dimension, r, is small compared to M . In
[13], a principal component analysis (PCA) pre-processing is
proposed as a dimensionality reduction step before performing
mCCA. However, PCA retains the components with most
variance within a data set and these components are not
necessarily the ones that are correlated across multiple data
sets. If the components are retained only on the basis of their
variance, then the PCA step before mCCA will likely retain
undesirable uncorrelated components.

Inspired by the strategy for two data sets in [23], we
propose a joint reduced-rank mCCA method (jRR-mCCA)
where the reduced dimension, r, and the model order, D,
are jointly estimated. In what follows, we use PCA as the
dimensionality reduction technique to show a fair comparison
with the competing PCA-based methods from [12], [13],
however, the PCA step in our test can be replaced by another
linear dimensionality reduction step as long as the reduced-
rank data can be described by (1) and its assumptions.

Let the rank-r PCA descriptions be X̃p = U>p (r)Xp, where
Xp = [Xp(1), . . . ,Xp(M)] is the sample data matrix and the
columns of Up(r) are the first r dominant eigenvectors of
R̂pp. The rank-reduced statistic, T (i, r), is computed using
the covariance matrices of the components extracted from the
rank-reduced descriptions X̃1, . . . , X̃P via mCCA-GENVAR,
and the threshold τ(i, r) is computed from the approximate
distribution ĝ(i, r) using the known parameters r, P, and i.
The jRR-mCCA estimator for D is

D̂ = max
r=1,...,rmax

min
i=0,...,r−1

{i : T (i, r) < τ(i, r)}, (9)

The decision rule in (9) is motivated by the fact that the min-
step will generally not overestimate d, while the max-step en-
sures that the rank of the dimensionality reduction, r, is chosen
large enough to capture all of the correlated components [23].
Here, rmax is a user-defined upper limit, typically chosen to
be smaller than M/P to avoid ill-conditioning of Ĉ. Thus,
the dimensionality reduction retains r components from each
data set that are the most informative for estimating D, and
excludes weaker uncorrelated components.

V. NUMERICAL RESULTS

In this section, we compare the performance of the pro-
posed technique with two existing multiset MOS methods
for estimating D, the pairwise mCCA-HT of [12] and the
joint eigenvalue decomposition (jointEVD) technique of [7].
The jointEVD technique is not well-suited to small-sample
scenarios. We therefore create a hybrid approach that first
reduces the rank of the data following the proposal in [13]
to do PCA-preprocessing and second applies the jointEVD
technique to the low-rank data. The rank-reduction in [13]
takes the desired rank as a parameter, which we obtain from
[24]. We refer to this combination of [7] + [13] + [24] as the
"hybrid jointEVD" approach.

The simulation setup is as follows1. We observe M = 200
samples from each of P = 10 data sets with N = 50
dimensions per data set. The collection of data sets has D = 5
components that are correlated across 10, 9, 8, 7, and 6
data sets, respectively, with associated correlation coefficients
of 0.85, 0.8, 0.75, 0.7 and 0.6. The variance is σ2

c = 1 for
each correlated component. In addition, there are two stronger
uncorrelated components with variance of 2 and 5 weaker
uncorrelated components with variance of 0.5 in each data

1Code for the techniques and experiments is available at
https://github.com/SSTGroup/Correlation-Analysis-in-High-Dimensional-Data
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Fig. 3: Mean D̂ for proposed and competing techniques for P = 10, N = 50
and M = 200.
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Fig. 4: Mean accuracy of D̂ for proposed and competing techniques for the
same parameter setting as Fig. 3.
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Fig. 5: Mean PCA rank estimated by the proposed and competing technique
for the same parameter setting as Fig. 3.

set. All data sets are corrupted with an additive white noise
whose variance, σ2

n , is chosen according to the signal-to-noise
ratio (SNR) defined as 10 log10{

σ2
c

σ2
n
}.

Fig. 3 and Fig. 4 plot the mean value and the mean accuracy
(the number of correct estimates divided by number of trials)
of D̂, respectively, estimated by each method from 500 Monte
Carlo trials as a function of the SNR. The pairwise mCCA-HT



technique combines the model-order estimates from each pair
of data sets (45 pairs for P = 10) to compute D̂. Thus, an
error in any of the pairwise model orders leads to an inaccurate
estimate of D. This can be seen in Fig. 3, where the pairwise
mCCA-HT technique overestimates D even for large SNR
values. On the other hand, the hybrid jointEVD technique
tends to underestimate D and approaches the true value only
for large SNR. The proposed jRR-mCCA technique estimates
D with high accuracy even for small SNR values as seen in
Fig. 4 and outperforms both of the competing techniques.

In Fig. 5, we illustrate the benefit of the proposed joint
approach for estimating D and r over the hybrid jointEVD
technique. Ideally the reduced-rank data would contain the
correlated components and as little else as possible. We can
see from Fig. 5 that the mean estimated rank from the proposed
method (black curve with circle markers) is close to 7. This
makes sense because there are 5 correlated components with
variance 1 and two uncorrelated components with variance 2.
This means that the proposed joint method retains all high
variance components necessary to estimate the true number
of correlations, and no unnecessary uncorrelated dimensions.
The hybrid approach (green curve with square markers), on the
other hand, estimates the rank r independently of the number
of correlated components D, and as such overestimates the
rank to be 12. This represents the total number of components
in each data set, but contains weak uncorrelated components
and means that the number of available samples is smaller
relative to the number of retained dimensions, further reducing
estimation accuracy. In this context, there is a significant
advantage to jointly estimating the rank of dimensionality
reduction with the model order.

VI. CONCLUSION AND FUTURE WORK

We derived a GLRT-based hypothesis testing framework for
determining the number of components correlated across more
than two data sets in the sample-poor regime. To the best of
our knowledge, this is the first method for joint dimensionality
reduction and model-order selection under the broad umbrella
of multiset correlation analysis. The GLRT is achieved by the
maximally correlated components that minimize the GENVAR
cost function of mCCA. To estimate the distribution of the test
statistic, which depends on the unknown correlation structure,
we propose a novel approximation method using Monte-
Carlo trials and random correlation structures. The GLRT is
combined with a dimensionality reduction step to improve
estimation accuracy when the number of available samples
is relatively small. The final end-to-end pipeline demonstrates
superior performance to the existing techniques in challeng-
ing sample-poor settings. The numerical experiments in this
manuscript are limited to synthetic data to clearly demonstrate
the scenarios in which the proposed method shines. In a
forthcoming sequel, the proposed method is used in a practical
application of brain imaging data fusion, in which accurately
estimating the number of correlated components is crucial for
the interpretability of brain activity patterns.
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