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Abstract. This paper concerns the minimax center of a collection of linear subspaces. For :-dimensional4
subspaces of an =-dimensional vector space, this can be cast as finding the center of a minimum enclosing ball on a5
Grassmann manifold. For subspaces of differing dimension, the setting becomes a disjoint union of Grassmannians6
rather than a single manifold, and the problem is no longer well-defined. However, natural geometric maps exist7
between these manifolds with a well-defined notion of distance for the images of the subspaces under the mappings.8
Solving the initial problem in this context leads to a candidate minimax center on each of the constituent manifolds,9
but does not inherently provide intuition about which candidate is the best representation of the data. Additionally,10
the solutions of different rank are generally not nested so a deflationary approach will not suffice, and the problem11
must be solved independently on each manifold. We propose and solve an optimization problem parametrized by the12
rank of the minimax center. The solution is computed with a subgradient algorithm applied to the dual problem. By13
scaling the objective and penalizing the information lost by the rank-: minimax center, we jointly recover an optimal14
dimension, :∗, and a subspace at the center of the minimum enclosing ball, U∗, that best represents the data.15
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1. Introduction. Finding the minimum enclosing ball (MEB) of a finite collection of19
points in ametric space, or the ℓ∞-center ofmass, is a topic of broad interest in themathematical20
community [3,4,10,17,21,25,39]. For Euclidean data, the problem has been well studied, and21
research has transitioned towards finding approximate solutions efficiently when computing22
the MEB exactly is impractical [4,39]. A breakthrough technique of Bădoiu and Clarkson [4]23
finds an optimal subset of the data, called a core-set, such that finding the exact MEB of24
the core-set is computationally tractable. They show that the radius of this core-set will be25
bounded by (1+ n) times the radius of the entire data set, where n depends only on the number26
of points in the core-set [4]. That is, the minimum enclosing ball can be approximated to any27
desired accuracy by increasing the number of points in the core-set, and the number of points28
needed for the radius of the core-set to be at most n percent larger than the true radius is d 2

n
e .29

This solution represents efforts to make ℓ∞-averaging possible for complex data sets.30
The difficulty in computing the MEB of Euclidean data is due to the massive size of data31

sets to be averaged, however in less traditional settings other difficulties arise and contribute32
to the complexity of this task. Many modern problems are formulated on manifolds instead33
of Euclidean space in situations where the manifold geometry better represents the natural34
structure of the data model [19, 26, 35]. Afsari provided existence and uniqueness conditions35
for Riemannian ℓ? centers of mass [2], and with this type of structure in mind, Arnaudon36
and Nielsen [3] adapted the efficient MEB algorithm of Bădoiu and Clarkson to Riemannian37
manifolds. For linear subspace data, a subclass of data addressed by [3], this work was further38
generalized by Renard, Gallivan, and Absil [24, 25]. They created a technique that applies to39
points lying on a disjoint union of Grassmannmanifolds, that is, a collection of ?8-dimensional40
subspaces of R= where ?8 is not necessarily equal for all 8. Although the data comes from a41
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collection of manifolds, the MEB must be computed on one individual Grassmannian and the42
choice of which is not obvious. Determining which Grassmannian provides the best center for43
a collection of subspaces is one of the tasks of this manuscript, and we provide a geometrically44
motivated criteria for automatically selecting this manifold.45

With subspace data, it is natural to think of the center of the Grassmannian minimum46
enclosing ball (GMEB) as the common information in the data set. Common subspace ex-47
traction can be found in subspace clustering [1], domain adaptation, and subspace alignment.48
These tools can be used in a plethora of tasks in pattern recognition including subspace49
tracking [32], face recognition [7, 8], video action recognition [7, 22], infected patient diag-50
nosis [18], adaptive sorting [15], model reduction [11], and many more. Common subspace51
extraction is frequently done by finding the ℓ2- or ℓ1-center in cases where outliers are present52
in the data collection, but if the data are drawn from a uniform distribution whose support53
is a ball, the ℓ∞-center gives the maximum likelihood estimator for the center of the support54
and thus may be preferred when all the subspaces have been drawn from a single uniform55
distribution [2]. Furthermore, techniques have been developed to prune outliers from data56
sets using the ℓ∞-norm, with theoretical guarantees in some circumstances [31].57

In this paper, we present a novel technique to accurately estimate the GMEB for a58
collection of linear subspaces of possibly differing dimension, and a geometrically inspired59
order-selection rule to identify the Grassmannian that best represents the shared information60
in the data. Choosing the ideal manifold on which to perform the ℓ∞-averaging is inherently61
related to finding a common subspace of optimal rank, and thus the numerical experiments62
explore the relationships between different rank-adaptive subspace averaging methods.63

The main contributions of the paper are summarized as follows. We propose64
• a subgradient approach to solve the dual of the GMEB problem for subspaces of65
differing dimensions. A duality gap of zero certifies the solution as optimal.66
• an unsupervised order-selection rule for the dimension of the center of the GMEB.67
• a warm-start initialization for the subgradient algorithm that reduces the number of68
iterations needed for the subgradient algorithm to converge.69
• a hybrid method for order-selection which modifies the existing rule of [28] for use70
with the center of the GMEB.71
• a synthetic data model that allows us to measure the accuracy of an estimate for the72
center of the GMEB, and demonstrate the effectiveness of the proposed technique73
using data generated with this model.74

Finally, we compare the proposed order-selection rules to existingmethods for automatic order75
selection in subspace averaging with numerical experiments.76

2. Mathematical background: Grassmannian minimum enclosing ball. In this sec-77
tion we provide the mathematical background necessary to formulate the GMEB problem for78
subspaces of differing dimension. We begin by stating the relevant properties of invariant79
metrics, a standard reference on this topic is [33]. We recall the maps defined in [38] that80
associate a subset of points on a single manifold with each subspace from the collection and81
the point-to-set distance that measures the dissimilarity of these sets. Finally, we explicitly82
state the minimax optimization problem that defines this GMEB.83

Denote by Gr(:, =) the Grassmann manifold of :-dimensional subspaces in R=. If � is84
an = × : matrix with full column rank, the column space of �, col(�), defines a subspace85
that can be identified with a point A ∈ Gr(:, =). To simplify notation we assume without86
loss of generality that the chosen representative for a point A ∈ Gr(:, =) is an orthonormal87
basis, � ∈ R=×: with �) � = �. Let O(:) denote the set of : × : orthogonal matrices. If88
&: ∈ O(:) then col(�&: ) = col(�) = A, and we can see that a point on this Grassmannian89
can be represented by any real =× : matrix that spans the same subspace. For any two points,90
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ON A MINIMUM ENCLOSING BALL OF A COLLECTION OF LINEAR SUBSPACES 3

A,B ∈ Gr(:, =), there exists a set of : principal angles, 0 ≤ \1 (A,B) ≤ · · · ≤ \: (A,B) ≤ c/2,91
defined recursively as92

(2.1)

\1 (A,B) � min
a1∈A,b1∈B

cos−1

(
a)1 b1

‖a1‖2‖b1‖2

)
, and for 8 = 2, . . . , :

\8 (A,B) � min
a8 ∈A,b8 ∈B

cos−1

(
a)
8

b8
‖a8 ‖2‖b8 ‖2

)
s.t. a)9 a8 = 0 for 9 < 8

b)9 b8 = 0 for 9 < 8.

93

The vectors that form these angles, {a1, . . . , a: } and {b1, . . . , b: }, are called the left and94
right principal vectors, respectively, and when normalized, these vectors form orthonormal95
bases �, � ∈ R=×: , for the spaces A and B. The principal angles and principal vectors can be96
computed via the singular value decomposition (SVD) [6]. Let �) � = +Σ,) be a thin SVD97
with the singular values sorted in nonincreasing order, so that98

(2.2)

+ ∈ R:×: with +)+ = �,
Σ ∈ R:×: with Σ = diag(cos() (A,B))), and
, ∈ R:×: with,), = � .

99

Then \8 (A,B) = cos−1 (Σ88) is the 8th principal angle separating A and B, with associated left100
and right principal vectors a8 = �v8 and b8 = �w8 for 8 = 1, . . . , : .101

Let 3 : Gr(:, =) × Gr(:, =) → R be a metric. If for all A,B ∈ Gr(:, =) and for all102
&= ∈ O(=) the left action of &= on � and � by multiplication does not change the value103
of the metric, that is, 3 (A,B) = 3 (QnA,QnB), then 3 is said to be orthogonally invariant.104
Orthogonally invariant metrics depend only on the relative position of A and B, so as a result105
of [37, Thm. 3], 3 can bewritten as a function of the vector of principal angles separatingA and106
B, ) (A,B) ∈ R: . Additionally, for �A (:, =) with either : ≠ 2 or = ≠ 2 there is an essentially107
unique invariant Riemannian metric (up to scaling) which yields 3 (A,B) = ‖) (A,B)‖2, and108
is frequently referred to as the geodesic distance based on arc length [37].109

Let D = {X8}"8=1 be a finite collection of subspaces of R
= with possibly different dimen-110

sions, so that dim(X8) = ?8 . For the set of positive integers P = {dim(X8) : X8 ∈ D} we111
can consider D as a collection of points lying on the disjoint union of Grassmann manifolds,112
X8 ∈

∐
?∈P Gr(?, =). To account for the difference in subspace dimensions, we adopt the113

convention of [38] by redefining 3 (U,X8) as the minimum distance between U and a subset114
of points on Gr(:, =), appropriately defined for each X8 ∈ D. Each subspace is associated115
with one of two types of subset, which are defined by116

(2.3)
Ω+ (X8) � {Y ∈ Gr(:, =) : X8 ⊆ Y} for ?8 < :, and
Ω− (X8) � {Y ∈ Gr(:, =) : Y ⊆ X8} for ?8 ≥ :.

117

We use Ω(X8) when referring to either type generically. For X8 such that ?8 < : , Ω+ (X8)118
is the set of all points of Gr(:, =) containing X8 . Alternatively when X8 is a ?8-plane with119
?8 > :, Ω− (X8) is all :-dimensional subspaces contained in X8 , and when ?8 = : the subset120
of points is just the singleton, X8 .121

Finally, we overload the notation for distance so that122

(2.4) 3Gr(:,=) (U,X8) � 3Gr(:,=) (U,Ω(X8)) = min{3 (U,Y8) : Y8 ∈ Ω(X8)}123
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Gr(: + 1, =)

X1

Gr(:, =)

Gr(: − 1, =)

X2

Ω+ (X2)
Ω− (X1)

U
Y3

Y2
Y1

Fig. 1: Illustration of the minimum point-to-set distance on Gr(:, =) between U and the sets
Ω− (X1), Ω+ (X2), and Y3, associated with points on Gr(: + 1, =), Gr(: − 1, =), and Gr(:, =),
respectively. The points that realize the minimum distance are Y1 ∈ Ω− (X1), Y2 ∈ Ω+ (X2),
and Y3. The point U is the center of the minimum enclosing ball of Y1,Y2, and Y3.

when the distance is being measured on Gr(:, =) and the data comes from Grassmann man-124
ifolds of possibly differing dimension. This is the proposed distance of [38], which is125
well-defined a fixed value of : . Figure 1 shows an illustration of this distance as the length126
of the shortest path between a point, U, and the sets of points, Ω(X8) for 8 = 1, . . . , 3. In this127
particular case Y3 ∈ Gr(:, =) so Y3 = X3 = Ω(X3).128

The minimum in Equation (2.4) always exists because Ω(X8) is a closed subset of the129
Grassmannian, and the points satisfying Y8 ∈ arg minY∈Ω(X8) 3 (U,Y) are independent of the130

choice of orthogonally invariant distance measure. Let *) -8 = +Σ,) be a thin SVD. One131
point that achieves the minimum distance is the columnspace of the matrix defined by132

(2.5) .8 �

{[-8w1, . . . , -8w: ] for ?8 ≥ :;[
-8w1, . . . , -8w?8 ,*v?8+1, . . . ,*v:

]
otherwise.

133

This derivation can be found in, e.g. [29].134
This formalism implies that distances can be written as a function of exactly : principal135

angles regardless of the dimension of X8 , and conveniently the definition agrees with many136
pseudo-metrics commonly used in the literature that measure similarity as a function of the137
(possibly less than :) principal angles between subspaces of different dimension. It should be138
clear, however, that this is not a metric because the distance between A and B will be zero if139
A is a proper subspace of B, despite being non-identical.140

This manuscript is concerned with computing the minimax center, i.e., the center of141
the GMEB, on Gr(:, =) for the collection of subspaces, D, using the point-to-set distance.142
However, rather than using a metric on Gr(:, =) we measure dissimilarity by the squared143
chordal distance, 3 (A,B) = ‖ sin() (A,B))‖22 . The minimum point-to-set distance using the144
squared chordal distance is145

(2.6)

3Gr(:,=) (U,X8) = ‖ sin() (U,Y8))‖22

=
1
2
‖*:*

)
: − .8.

)
8 ‖2�

= : − Tr(*).8.)8 * )
= min{:, ?8} − Tr(*) -8-)8 *),

146
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where ) (U,Y8) ∈ R: is the vector of principal angles between U and a point Y8 ∈ Ω(X8) that147
attains the minimum. The final equality in Equation (2.6) can be seen from the definition of148
Y8 in Equation (2.5) and will be demonstrated in Equation (5.13). Note that it is not necessary149
to know Y8 in order to compute 3Gr(:,=) (U,X8). With this definition and choice distance150
measurement, the minimax problem we wish to solve is151

(2.7) arg min
U∈Gr(:,=)

max
8=1,...,"

3Gr(:,=) (U,X8).152

Using the notion of distance from Equation (2.4), an algorithm was proposed by [25] to153
solve Problem (2.7) for a given value of : . Since the data is not of uniform dimension, it is154
one of our goals to find the solution across all possible values of : that best represents the155
common subspace in the data. In Section 5 we propose an order-selection rule for comparing156
solutions of different dimension, however wemust first be able to find the solutions of different157
dimension efficiently. As we will see in Section 5.1, U∗ (:) ∈ Gr(:, =) is not always contained158
inU∗ (: + 1) ∈ Gr(: +1, =), so it is not possible to construct the respective solutions iteratively159
via deflation. Instead the problem needs to be solved independently for each value of : .160

3. Dual formulation. Problem (2.7) is nonconvex and challenging to optimize directly.161
Therefore, in this section we formulate the dual problem which can be solved efficiently. The162
dual variables also provide a primal-feasible solution, which can be tested for optimality.163

Using Equation (2.6), Problem (2.7) can be written as one with matrix arguments that164
can be identified with the Grassmannian points they represent. That is,165

(3.1)
arg min
* ∈R=×:

max
8=1,...,"

(
min{:, ?8} − Tr(*) -8-)8 *)

)
s.t. *)* = �,

166

where* is an orthonormal basis for U, -8 is an orthonormal basis for X8 , and ?8 = dim(X8).167
A solution to (2.7) is then the column space of a solution to (3.1), U∗ = col(*∗). For ease of168
notation we will treat the dual problem as a minimization, so we reformulate the primal as,169

(3.2)
arg max
* ∈R=×:

min
8=1,...,"

−
(
min{:, ?8} − Tr(*) -8-)8 *)

)
s.t. *)* = � .

170

Adding an auxiliary variable g, the quadratic cost function to be minimized is replaced by a171
smooth linear objective that is maximized with respect to quadratic inequality constraints,172

(3.3)

arg max
* ∈R=×: ,g∈R

g

s.t. − g −min{:, ?8} + Tr(*) -8-)8 *) ≥ 0 for 8 = 1, . . . , ",

*)* = � .

173

This is essentially the same construction as in [25]. The authors of [25] go on to compute an174
intermediate solution to this problem via the Karush–Kuhn–Tucker conditions, and iterate to175
a stationary point by taking geodesic steps towards the subspace with the maximum distance176
to the current iterate of the primal variable. This contrasts with the proposed approach, where177
a solution to (2.7) is found by optimizing the dual problem.178

Let , = [_1, . . . , _" ]) be a vector of Lagrange multipliers associated with the inequality179
constraints in (3.3). Dualizing only the inequality constraints leads to the Lagrangian180

(3.4) L(*, g, ,) = g +
"∑
8=1

_8

(
−g −min{:, ?8} + Tr(*) -8-)8 *)

)
,181
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such that *)* = � and _8 ≥ 0 for 8 = 1, . . . , ". The dual cost function is then found by182
maximizing L over* and g,183

(3.5) 5 (,) = sup
g

(
g −

"∑
8=1

_8g
)
−

"∑
8=1

_8 min{:, ?8} + sup
*)*=�

Tr(*) (
"∑
8=1

_8-8-
)
8 )*).184

The maximum over g yields 5 (,) = ∞ unless ‖,‖1 = 1, in which case the first term is185
zero. The final term in (3.5) is a well-known problem that is maximized by the sum of186
the : largest eigenvalues of

∑"
8=1 _8-8-

)
8

[23]. Let 31 (,) ≥ 32 (,) ≥ · · · ≥ 3= (,) be the187

eigenvalues of
∑"
8=1 _8-8-

)
8

and let v1 (,), v2 (,), . . . , v= (,) be the associated orthonormal188
eigenvectors. The argument , is included to emphasize that the eigendecomposition depends189
on ,. The supremum is then

∑:
9=1 3 9 (,), and is achieved by the matrix whose columns are190

the : dominant eigenvectors,191

(3.6) *, � [v1 (,), . . . , v: (,)] .192

Thus the dual cost can be written as193

(3.7) 5 (,) = −
"∑
8=1

_8 min{:, ?8} +
:∑
9=1

3 9 (,),194

and finally, we wish solve the problem,195

(3.8) arg min
,∈R"

5 (,) s.t. ‖,‖1 = 1 and _8 ≥ 0 for 8 = 1, . . . , ".196

4. Solution via subgradient. The dual cost in (3.7) is a locally Lipschitz convex function.197
However, it is not differentiable at values of , for which 3: (,) = 3:+1 (,), that is, at values for198
which the :th and (: + 1)st eigenvalues of ∑"

8=1 _8-8-
)
8
are equal [23, Corr. 3.10]. There are199

many efficient ways to optimize such a function. In this section we recall how the subgradient200
method [30] can be applied to solve this dual problem. After a subgradient has been computed,201
the well-developed literature of subgradient algorithms provides a variety of techniques and202
step sizes to optimize Problem (3.8) with associated convergence guarantees.203

Recall that a vector g ∈ R" is a subgradient of 5 : R" → R at x ∈ dom 5 if for all
z ∈ dom 5 ,

5 (z) ≥ 5 (x) + g) (z − x).
In this case we denote that g is in the subdifferential of 5 at x by writing g ∈ m 5 (x). If 5 is204
differentiable at x then the gradient is the only subgradient and g = ∇ 5 (x) = m 5 (x).205

To minimize 5 in Problem (3.8), the subgradient method uses the iteration206

(4.1) , (C+1) = Π(, (C) − U (C)g(C) ),207

where U (C) is a step size selected to guarantee that the sequence {, (C) }∞
C=1 converges (in208

distance) to the optimum, ,∗, and Π : R" → {x : ‖x‖1 = 1, G8 ≥ 0 for 8 = 1, . . . , "} ⊂ R"209
projects the iterate into the unit simplex.210

There is a standard trick for computing a subgradient of the dual function that can211
adapted to this problem from nonlinear optimization texts such as [5]. Write the Lagrangian212
as L(*, g, ,) = @(*, g) + ,) g(*, g), where @(*, g) is the primal objective function and213
g(*, g) ∈ R" is the vector of constraint values. Given the dual variable, , (C) ∈ R" , at214
iteration C, let (*, (C ) , g, (C ) ) be the primal variable that maximizes the Lagrangian. Then215
g(C) = g(*, (C ) , g, (C ) ) is a subgradient of 5 at , (C) .216
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In our case *, (C ) is defined according by Equation (3.6) and the 8th element of the217
constraint vector is 68 (*, (C ) , g, (C ) ) = −g, (C ) −min{:, ?8} +Tr(*), (C ) -8-

)
8
*

, (C )
). However, the218

constant vector [−g, (C ) , . . . ,−g, (C ) ]) ∈ R" does not affect the direction after projection onto219
the unit simplex, so a subgradient of 5 (, (C) ) is220

(4.2) g(C) =
©­­«
−min{:, ?1} + Tr(*), (C ) -1-

)
1 *, (C )

)
...

−min{:, ?" } + Tr(*), (C ) -" -
)
"
*

, (C )
)

ª®®¬ .221

We can check that g(C) is a subgradient of 5 as follows. For any ,̃ ∈ R" such that ‖,̃‖1 = 1222
and _̃8 ≥ 0 for 8 = 1, . . . , " we have223

(4.3)

5 (, (C) ) + g(C)) (,̃ − , (C) ) = 5 (, (C) ) + g(C)) ,̃ − g(C)) , (C)

= 5 (, (C) ) + g(C)) ,̃ − 5 (, (C) )

= −
"∑
8=1

_̃
8
min{:, ?8} + Tr(*), (C ) (

"∑
8=1

_̃
8
-8-

)
8 )*, (C )

)

≤ −
"∑
8=1

_̃
8
min{:, ?8} + max

*)*=�
Tr(*) (

"∑
8=1

_̃
8
-8-

)
8 )*)

= 5 (,̃),

224

and thus g(C) ∈ m 5 (, (C) ). Additionally, it can be verified that this subgradient matches the225
general description provided by [23, Thm. 3.9] with the associated affine shift.226

4.1. Convergence. The subgradient g(C) can be used to update , (C) via the iteration227
in (4.1). The subgradient method is not a descent method, so the value of the objective228
function at step C +1 may be larger than it was at step C. Thus we keep track of the dual variable229
with the lowest cost at each iteration and denote it230

(4.4) , (C+1)best =


, (C)best 5 (, (C+1) ) > 5 (, (C)best);

, (C+1) otherwise.
231

Given an upper bound on the norm of the subgradients, ‖6 (C) ‖2 ≤ � < ∞ for all C,232
classical theory makes different guarantees on the convergence of the sequence of iterates,233

{, (C) }∞
C=1, and thus on the sequence of objective function values, { 5 (,

(C)
best)}

∞
C=1, depending on234

the choice of step size, U (C) . For example, with step sizes independent of iteration like U (C) = 0235
or U (C) = 0/‖g(C ) ‖2 for some 0 > 0, the subgradient algorithm will converge respectively to236
within �20/2 or �0/2 of the optimal value [5]. Alternatively, if the step size converges to zero237
and the sequence is nonsummable or square-summable, that is, limC→∞ U (C) = 0 and238

(4.5)
∞∑
C=1

U (C) = ∞ or
∞∑
C=1
(U (C) )2 < ∞,239

the subgradient method converges to an optimal objective value, limC→∞ 5 (, (C)best) = 5 (,∗).240

These conditions are satisfied by step sizes like, U (C) = 0/√C for 0 > 0, or U (C) = 0/(1+C)241
where 0 > 0 and 1 ≥ 0. Proofs of these results can be found in standard literature on convex242
optimization for nonsmooth problems such as [5, 13, 30].243
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Although the theory requires U (C) to satisfy the constraints in (4.5) for convergence,244
the small step size leads to very slow convergence. In practice we can find an approximate245
solution quickly by stepping in the direction of a subgradient but requiring the dual objective to246
decrease at each iteration. AlgorithmA.1 (in Appendix A) solves Problem (3.8) by performing247
a back-tracking line search in the direction of g(C) ∈ m 5 (, (C) ) to ensure that the dual objective248
decreases at each step, however, this method is not guaranteed to converge because g(C) is not249
necessarily a descent direction. The practical implementation of Algorithm A.1 is a hybrid of250
a back-tracking line search and a nonsummable diminishing step size and for a fixed dimension251
: it identifies a stationary point of the dual problem while providing a feasible solution to the252
primal problem. It is not intended to be a state-of-the-art subgradient algorithm, but rather253
just one example of an implementation that is faster than the standard 0/(1+C) square-summable254
step size. Alternatively, a well-established quasi-Newton method like the Broyden-Fletcher-255
Goldfarb-Shanno (BFGS) algorithm [9] can be used to solve Equation (3.8), but empirically256
the convergence rates are comparable to those of the algorithm presented here for this problem.257

4.2. Optimality. In addition to theoretical convergence guarantees, the optimality of a258
solution to the dual subgradient approach can be verified in some cases. Let ,∗ be a solution259
to Problem (3.8). There exists a matrix *,∗ whose columns are the : dominant eigenvectors260
of

∑"
8=1 _

∗
8
-
8
-)
8
, analogous to Equation (3.6). Then *,∗ satisfies *),∗*,∗ = � and is thus a261

feasible solution to the primal problem in (3.1). If the primal and dual objective functions are262
equal, strong duality holds and implies that ,∗ and U∗ = col(*,∗ ) are globally optimal dual263
and primal variables, respectively. Empirically the duality gap approaches zero for collections264
of data that satisfy an implicit assumption of minimax optimization; that the data collection265
is free of outliers. Even when strong duality does not hold, the duality gap gives a bound on266
the maximum possible improvement for a solution.267

This verification of optimality is standard for problems where the primal and dual costs268
are both computable, but existing techniques for finding the GMEB do not offer this feature.269
For instance, using a primal method like [25] does not directly provide a solution to the dual270
problem, and thus the duality gap is unknown. Section 7.1 contains numerical experiments271
that demonstrate the accuracy of the proposed subgradient method.272

5. Proposed order selection rule. Given a dimension, : , and a finite collection of273
subspaces, D = {X8 ∈ Gr(?8 , =)}"8=1 , there exist subspaces, U∗ (:), that solve274

(5.1) arg min
U∈Gr(:,=)

max
8=1,...,"

3Gr(:,=) (U,X8),275

for : = 1, . . .max8{dim(X8)}. The argument : is now included in the notation for the GMEB276
center to emphasize that the subspace depends on the parameter : , and may differ significantly277
depending on the value of this parameter. Section 4 described a method to compute U∗ (:)278
from the associated dual variable, ,∗ (:) ∈ R" . However, because D contains subspaces of279
differing dimension, it is unclear on which Grassmannian the minimum enclosing ball should280
be computed. Thus, given the set D, in this section we would like to determine the optimal281
choice for :, in addition to the associated center U∗ (:). Please note a change in notation; the282
costs associatedwith a particular order, : , aremore intuitive when the primal is formulated as a283
minimization problem and the dual is a maximization. Therefore, as shown in Equation (5.1),284
the primal minimization formulation is used for the remainder of the manuscript. The prior285
formulation was only used for ease of notation in the subgradient method.286

All orthogonally invariant distances on Gr(:, =) can be written as a function of the :287
principle angles between a pair of points. It should be clear from the definition inEquation (2.1)288
that each angle is bounded above by c/2, and thus that the squared chordal distance is bounded289
above by : . Scaling the primal objective function by 1/: normalizes the cost associated with290
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U∗ (:) so that the value of291

(5.2) 2obj (:) :=


0 : = 0;

max
8=1,...,"

3Gr(:,=) (U∗ (:),X8)
:

: = 1, . . .max
8
{dim(X8)},

292

gives a fair comparison across different values of :. The normalized objective function293
achieves its maximum value, 2obj (:) = 1, when there exits an 8 such that X8 ⊥ U∗ (:).294
That is, U∗ (:) contains no information about at least one of the points in D. At the other295
extreme, the minimum occurs when : = 0, and when the point of each Ω∗ (X8) closest to the296
center coincides with the center. That is, 2obj (:) = 0 when Y∗

8
(:) = U∗ (:) for all 8, where297

Y∗
8
(:) = arg min

Y8 ∈Ω∗ (X8)
3Gr(:,=) (U∗ (:),Y8).298

Simplyminimizing 2obj (:)with respect to : is not sufficient to identify the ideal dimension299
of U∗ (:) because on average 2obj (:) ≤ 2obj (: +1) irrespective of the relationship between the300
data points, and of course 2obj (0) = 0 by definition. However, the dimension of the ideal center301
should represent all the common information without over-fitting, and should also indicate302
when no significant relationship exists between the data. Thus we propose a penalty term303
based on the dimensions of the data not represented by U∗ (:) that balances the information304
lost by making : too small with the lack of specificity that comes from setting : too large.305

Let U∗⊥ (:) denote the orthogonal complement of U∗ (:) and ?̃ 9 � min{= − :, dim(X 9 )}306
for 9 = 1, . . . , ". The expression307

(5.3) 2pen (:) :=


1 : = 0;

min
9=1,...,"

1 −
3Gr( ?̃ 9 ,=) (U∗⊥ (:),X 9 )

?̃ 9
: = 1, . . .max

9
{dim(X 9 )},

308

represents the minimum similarity between any point in D and the dimensions not contained309
in the center of the GMEB. A high minimum similarity between points in D and U∗⊥ (:)310
implies that too much information is being left out of the central subspace, U∗ (:). The penalty311
term takes a value of 2pen (:) = 1 when dim(U∗⊥ (:) ∩ X 9 ) = ?̃ 9 for all 9 and 2pen (:) = 0312
when there exists a 9 for which X 9 ⊥ U∗⊥ (:). The sum of the terms in (5.2) and (5.3) leads313
to the proposed rule for selecting the optimal order :∗,314

(5.4) arg min
:=0,...,max8 {dim(X8) }

2obj (:) + 2pen (:).315

The two terms in (5.4) are computed independently so the GMEB center is not affected by316
the penalty term. The value of :∗ that minimizes the sum of these two terms corresponds to317
the number of subspace dimensions needed to represent the common information present in318
D without over-fitting. Numerical experiments in Section 7.3 demonstrate the efficacy of the319
order selection rule on simulated data with ground truth.320

5.1. Primal solutions are not nested in general for increasing values of : . Naively,321
the order selection rule in Equation (5.4) can be applied by computing the costs 2obj (:) and322
2pen (:) independently for : = 0, . . . ,max8{dim(X8)} as follows,323

1. Compute ,∗ (:) using the subgradient method described in Section 4.324
2. Find the associated primal variable, U∗ (:), as the :-dimensional eigenspace of the325

weighted sum
∑"
8=1 _

∗
8
(:)-

8
-)
8
.326

3. Compute the orthogonal complement, U∗⊥ (:) = col
(
� −*∗ (:)*∗) (:)

)
.327

Then :∗ is selected as the value of : associated with the minimum cost, 2obj (:) + 2pen (:).328
If ,∗ (:) = ,∗ (: + 1) for some : < max8{dim(X8)} then the solution on Gr(: + 1, =) can be329
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constructed in a greedy fashion as the direct sum of the solution on Gr(:, =) and the (: + 1)st330
eigenvector of

∑"
8=1 _

∗
8
(:)-

8
-)
8
. Unfortunately, the dual variables are not generally equal for331

increasing values of : , so a greedy approach is not appropriate.332
Observe that the central subspaces are not nested for increasing dimensions in the follow-333

ing illustrative example. Let334

(5.5) -1 =



√
2√
3

0
1√
6

0
1√
6

0

0
√

7√
8

0 1√
8


, -2 =



1√
6

0
√

2√
3

0
1√
6

0
0 1√

8

0
√

7√
8


, and -3 =



1√
6

1√
6√
2√
3

0
0


,335

be orthonormal bases for the three pointsX1,X2 ∈ Gr(2, 5) and X3 ∈ Gr(1, 5).One can check336
that the subspace that minimizes the maximum distance to these three points on Gr(1, 5) is337
the mean of their first columns. That is, the optimal primal and dual variables are338

(5.6) U∗ (1) = col
( [

1√
3

1√
3

1√
3

0 0
]) )

, and ,∗ (1) =
[

1√
3

1√
3

1√
3

])
,339

with associated primal and dual costs of340

(5.7) min
U∈Gr(1,5)

max
8=1,2,3

3Gr(1,5) (U,X8) = max
,∈R3

min
*)*=�

1 −
3∑
8=1

_8Tr(*).8.)8 * ) =
1
9
.341

The duality gap in Equation (5.7) is zero, indicating that this is a global solution.342
On Gr(2, 5), however, Ω+ (X3) consists of subspaces that span -3 and any orthogonal343

direction. In particular there exists Y3 ∈ Ω+ (X3) such that the second column of .3 is344
[0 0 0 1/√2 1/√2]) . This leads to a solution for the center of the minimum enclosing ball on345
Gr(2, 5) given by primal and dual variables346

(5.8) U∗ (2) = col ©­«
[ 3√

22
3√
22

2√
22

0 0
0 0 0 1√

2
1√
2

]) ª®¬ , and ,∗ (2) =
[ 1

2
1
2 0

])
.347

Notably, X3 is not in the support of the minimum enclosing ball on Gr(2, 5) and thus does not348
influence the central subspace. Strong duality also holds for this solution with349

(5.9) min
U∈Gr(2,5)

max
8=1,2,3

3Gr(2,5) (U,X8) = max
,∈R3

min
*)*=�

2 −
3∑
8=1

_8Tr(*).8.)8 * ) =
14 − 3

√
7

24
.350

Since U∗ (1) is orthogonal to the second dimension of U∗ (2) and noncollinear with the first,351
and the columns of *∗ (2) are orthogonal, we have U∗ (1) ⊄ U∗ (2). Additionally we find that352
optimal order selected by applying the rule in Equation (5.4) is :∗ = 1, because353

(5.10)

2obj (0) + 2pen (0) = 0 + 1 = 1,

2obj (1) + 2pen (1) =
1
1

(
1
9

)
+ 1

1
©­«1 −

(√
8
√

9

)2ª®¬ ≈ 0.22, and

2obj (2) + 2pen (2) =
1
2

(
14 − 3

√
7

24

)
+ 1

2
©­«2 −

(
−1
√

12

)2
+

(
1 −
√

7
√

16

)2ª®¬ ≈ 0.25.

354
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This agrees with the intuition that the center of the minimum enclosing ball represents the355
common information in all points without over-fitting to any subset of points, but note that the356
optimal order is not always the dimension of the smallest subspace. The common subspace357
may have dimension smaller than any of the samples or there may be no common subspace.358

Even though the primal solutions are not always nested, a good initial guess for the dual359
variable will reduce computational overhead. One benefit of the subgradient approach is that360
,∗ (:) is computed explicitly. Thus we can initialize the algorithm with , (0) (: + 1) = ,∗ (:).361
The impact of this heuristic warm-start is discussed in the experiments in Section 7.2.362

5.2. Related literature on order fitting for subspace averaging. A recent work from363
Santamaría et al. [28] also attempts to find a central subspace of ambiguous dimension. The364
authors minimize the mean-squared error (MSE) between a subspace and a collection of data365
in the space of = × = projection matrices using the squared Frobenius norm. That is,366

(5.11) � (:) = min
U∈Gr(:,=)

1
"

"∑
8=1
‖**) − -8-)8 ‖2� .367

Putting aside for a moment that the current work is interested in minimizing the maximum368
deviation rather than the mean-squared error, there remains a central difference between the369
technique in [28] and the proposed method. The optimization of Equation (5.11) is done370
in a vector space, after which the solution is mapped to the nearest point on the Grassmann371
manifold. This is subtly different than minimizing the MSE on the Grassmannian with respect372
to the squared chordal distance using the point-to-set interpretation of [38]. To see this, write373
half of the squared distance from [28] between the central subspace and the 8th point as374

(5.12)

1
2
‖*∗ (:)*∗) (:) − -8-)8 ‖2� =

: + ?8
2
−

min{:, ?8 }∑
A=1

cos2 (\A (U∗ (:),X8))

=
|: − ?8 |

2
+

min{:, ?8 }∑
A=1

sin2 (\A (U∗ (:),X8)).

375

In contrast, the point-to-set squared chordal distance on Gr(:, =) is376

(5.13)

3Gr(:,=) (U∗ (:),X8) = min
{
3 (U∗ (:),Y8) : Y8 ∈ Ω(X8)

}
= min

{1
2
‖*∗ (:)*∗) (:) − .8.)8 ‖2� : Y8 ∈ Ω(X8)

}
= : −

:∑
A=1

cos2 (\A (U∗ (:),Y8))

=

min{:, ?8 }∑
A=1

sin2 (\A (U∗ (:),X8))

377

because 0 = \?8 (U∗ (:),Y8) = \?8+1 (U∗ (:),Y8) = · · · = \: (U∗ (:),Y8) if ?8 < : by the378

definition of Y8 in Equation (2.5). Thus the distances differ by |:−?8 |2 , which is the difference379
in dimensions between the central subspace and the 8th data point.380

The slight difference in distance measurements lends itself to an interesting interpretation381
when determining the appropriate rank of the central subspace. The solution, U∗ (:), to382

(5.14) arg min
U∈Gr(:,=)

1
"

"∑
8=1
‖**) − -8-)8 ‖2�383
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12 T. MARRINAN, P.-A. ABSIL, AND N. GILLIS

for a fixed : is the dominant :-dimensional eigenspace of the sum 1
"

∑"
8=1 -8-

)
8
. That is, if384

(5.15)
1
"

"∑
8=1

-8-
)
8 = ���

)385

is an eigendecomposition with eigenvectors � = [f1, f2, . . . , f'] and associated eigenvalues386
31 ≥ 32 ≥ · · · ≥ 3', then the solution to Equation (5.14) is U∗ (:) = [f1, f2, . . . , f: ] . Note387
that this U∗ (:) is not the same subspace as the center of the minimum enclosing ball. The388
MSE in Equation (5.11) can be written as a function of all ' eigenvalues,389

(5.16) � (:) =
:∑
A=1

1 − 3A +
'∑

A=:+1
3A ,390

and the minimum of Equation (5.16) is achieved when :∗ is the smallest value for which391
3:+1 < 0.5. This eigenvalue threshold is then fixed regardless of the dimension of the ambient392
space, and as we will see in Section 7.3, the selected dimension could differ drastically for393
noisy data depending on the ambient dimension.394

For a different interpretation of the :∗ that minimizes Equation (5.11) we can rewrite395
Equation (5.16) as a function of the angles between each eigenvector and the subspaces,396

� (:) =
:∑
A=1

1 − f)A (
1
"

"∑
8=1

-8-
)
8 )fA +

'∑
A=:+1

f)A (
1
"

"∑
8=1

-8-
)
8 )fA(5.17)397

=

:∑
A=1

1 − 1
"

"∑
8=1

cos2 (\ (fA ,X8)) +
'∑

A=:+1

1
"

"∑
8=1

cos2 (\ (fA ,X8))(5.18)398

=

:∑
A=1

1
"

"∑
8=1

sin2 (\ (fA ,X8)) +
'∑

A=:+1

1
"

"∑
8=1

sin2 ( c
2
− \ (fA ,X8))(5.19)399

=

:∑
A=1

1
"

"∑
8=1

sin2 (\ (fA ,X8)) +
'∑

A=:+1

1
"

"∑
8=1

sin2 (\ (fA ,X⊥8 ))(5.20)400

=

:∑
A=1

1
"

"∑
8=1

3Gr(1,=) (fA ,X8) +
'∑

A=:+1

1
"

"∑
8=1

3Gr(1,=) (fA ,X⊥8 ).(5.21)401

The equality between (5.19) and (5.20) is due to [16, Thm. 2.7] which implies that c
2 −402

\ (fA ,X8) = \ (fA ,X⊥8 ). Note, however, that Equation (5.21) is not equivalent to403

(5.22)
1
"

"∑
8=1

3Gr(:,=) (U∗ (:),X8) +
1
"

"∑
8=1

3Gr('−:,=) (U∗⊥ (:),X⊥8 )404

because linear combinations of the eigenvectors, fA , are not included in the expression.405
A new interpretation of the MSE-minimizing : becomes fairly apparent in light of Equa-406
tion (5.21). The optimal :∗ is the one that minimizes the mean-squared chordal distance407
between {f1, . . . , f: } and the data points, plus the mean-squared chordal distance between408
{f:+1, . . . , f'} and the orthogonal complements of the data points.409

5.3. Hybrid rule. It is possible to create a hybrid of the order-selection rule of [28] and410
the proposed method with a slight modification. In [12], a robustification of the technique411
in [28] is proposed that leads to a weighted eigenvalue decomposition at optimality. The412
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weights are determined using a variety of robust objective functions via a majorization-413
minimization scheme, which results in a down-weighting of outliers in the data. Byminimizing414
the mean-squared error of the weighted average (similar to Equation (5.11)), this amounts to415
a hard eigenvalue threshold with the order chosen to be the number of dimensions with416
eigenvalues greater than 0.5.417

For the hybrid method, weights will come from the values of the dual variable, ,∗ (:), at418
optimality. Since these values depend on the parameter :, the hard eigenvalue threshold is not419
applicable. Let 31 (:) ≥ 32 (:) ≥ · · · ≥ 3' (:) be the eigenvalues of

∑"
8=1 _

∗
8
(:)-

8
-)
8
where420

,∗ (:) is the vector of optimal dual variables computed for the GMEB on Gr(:, =) using the421
proposed algorithm. For : = 0, let _∗

8
(0) = 1

"
for 8 = 1, . . . , ".We define a modified version422

of the MSE from Equation (5.16) as423

(5.23) �̃ (:) =
:∑
A=1

1 − 3A (:) +
'∑

A=:+1
3A (:).424

The order-selection rule of [28] applied to the GMEB center is then425

(5.24) arg min
:=0,...,max8 {dim(X8) }

�̃ (:).426

It should be clear that the eigenvalues {3A (:)}'A=1 will be different for different values of427
,∗ (:). In the experiments of Section 7.3, this combined method is referred to as “Hybrid” and428
performs favorably for all tests; out-performing the other techniques in 2 out of 3 scenarios.429

6. Synthetic data generation. The numerical experiments in Section 7 require data430
for which the ground truth is known, and ideally data for which the center of the GMEB is431
distinct from the other generalized Grassmannian means. Thus, in this section we propose432
two different models for sampling points nonuniformly from a unit ball on the Grassmannian.433
The first is an asymmetrical nested ball structure, and the second samples more densely within434
a randomly selected arc of the boundary of a unit ball.435

6.1. Asymmetrical nested ball model. A collection of subspaces, D = {X8}"8=1, are436
uniformly sampled from two balls, Bn2 (Z2) ⊂ Bn1 (Z1) ⊂ Gr(:0, =) with centers at Z1, Z2437
and corresponding radii n1 > n2, respectively. The larger ball, Bn1 (Z1), is the minimum438
enclosing ball of the data so that U∗ (:0) = Z1. The smaller ball is fully contained within439
the larger ball, i.e., Bn2 (Z2) ⊂ Bn1 (Z1), but Z1 ∉ Bn2 (Z2). Let "1, "2 be the number of440
points sampled from Bn1 (Z1),Bn2 (Z2) respectively, with " = "1 + "2. When "2 = 0, the441
generalized Grassmannian means are all equal to the point Z1. When more points are sampled442
from Bn2 (Z2) and the fraction "2/"1 grows, the generalized Grassmannian means for ? < ∞443
move away from Z1 in the direction of Z2, making the averages distinct without affecting the444
center of the GMEB. The radius of the large ball, n1, controls the similarity of the data points.445

446
As described, the data points are all sampled from a single manifold, Gr(:0, =). If n1 is447

small enough, then the optimal rank for the GMEB (or any of the generalized Grassmannian448
means) is :∗ = :0. This construction can be generalized in two ways.449

1. For 8 = 1, . . . , " , the basis for X8 can be completed to a ?8-dimensional subspace450
by taking the span of -8 and ?8 − :0 random dimensions. If the ?8 − :0 random451
dimensions are mutually orthogonal for 8 = 1, . . . , " , then the optimal rank for the452
GMEB is still :∗ = :0.453

2. Points from the large ball can be sampled from one manifold, Bn1 (Z1) ⊂ Gr(:1, =)454
while points from the small ball are sampled from another, Bn2 (Z2) ⊂ Gr(:2, =).455
If :1 ≠ :2, the optimal rank of the central subspace is ambiguous. Experiments456
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X8 ∈ B1 (Z1)
X8 ∈ B0.2 (Z2)
True center
Karcher mean
Estimated center

Fig. 2: Two examples of point sets from Gr(1, 3) generated using the nested ball model
embedded into R2 by multidimensional scaling. The points from B1 (Z1) are indicated with
x’s, points from B0.2 (Z2) are marked with white circles, the true center is the green square,
the Karcher mean is the blue circle, and the estimated GMEB center is the yellow diamond.

show that using the proposed order selection rule, :∗ = :1 independent of other457
parameters, but using the criteria of [28], :∗ depends on n1 and "2/"1.458

As an illustrative example, Figure 2 shows 2-dimensional embeddings via multidimensional459
scaling of data sets on Gr(1, 3) that have been generated according to the asymmetrical nested460
ball model. The yellow diamond indicates the center of theGMEB (computed via the proposed461
method) and the blue circle marks the Karcher mean of each data collection.462

6.2. Unit ball with higher sampling density from a random arc. Another practical463
scenario where the GMEB center may differ from other generalized Grassmannian means is464
when data has been sampled unevenly. This setting is simulated by selecting a random arc465
from the boundary of a unit ball and sampling additional points from that region. A collection466
of subspaces, D = {X8}"8=1, are uniformly sampled from the ball Bn1 (Z1) ⊂ Gr(:0, =) with467
center at Z1 and radius n1. "1 points are sampled from Bn1 (Z1) so that U∗ (:0) = Z1. Two468
points are randomly selected from the boundary of Bn1 (Z1), and "2 additional points are469
uniformly sampled from the arc connecting them on the boundary to create " = "1 + "2470
samples. The data points are all sampled from a single manifold, Gr(:0, =), and for sufficiently471
small n1, the optimal rank for the GMEB (or any of the generalized Grassmannian means)472
is :∗ = :0. To generalize this construction, additional dimensions can be included to create473
points from a disjoint union of Grassmannians.474

For 8 = 1, . . . , " , the basis forX8 can be completed to a ?8 dimensional subspace by taking475
the span of -8 and ?8 − :0 random dimensions. If the ?8 − :0 random dimensions are mutually476
orthogonal for 8 = 1, . . . , " , then the optimal rank for the GMEB is still :∗ = :0. Figure 3477
shows 2-dimensional embeddings via multidimensional scaling of data sets on Gr(1, 3) that478
have been generated as a unit ball with higher sampling density along a random arc. The479
yellow diamond indicates the center of the GMEB (computed via the proposed method) and480
the blue circle marks the Karcher mean of each data collection.481

It should be noted that using either data model the point at the center of Bn1 (Z1) is482
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X8 ∈ B1 (Z1)
True center
Karcher mean
Estimated center

Fig. 3: Two examples of point sets from Gr(1, 3) on the unit ball, B1 (Z1), sampled with
nonuniform density on the boundary, embedded into R2 by multidimensional scaling. Points
from B1 (Z1) are indicated with x’s, the true center is the green square, the Karcher mean is
the blue circle, and the estimated GMEB center is the yellow diamond.

only the ground-truth center of the minimum enclosing ball of the data collection, U(:∗), if483
the points have been sampled with a high enough density from the surface of the ball. The484
minimum number uniformly distributed points needed grows with the ambient dimension, =,485
so in high dimensional spaces the number of points, ", needed to create a ground-truth center486
may become prohibitively large. The experimental data can be generated exclusively from the487
boundary of the balls or interior points can be added.1488

7. Numerical experiments. The experiments in this section are meant to illustrate three489
properties of the proposed GMEB algorithm and associated order-selection rule. First, we490
demonstrate the speed and accuracy of the proposed method for estimating the center of the491
GMEB. Second, we demonstrate that a warm-start on Gr(: + 1, =) using the optimal solution492
from Gr(:, =) can reduce the number of iterations required for the algorithm to converge.493
And finally, we compare results of the proposed order-selection rule and the rule of [28] in a494
variety of scenarios to gain intuition about when and how they differ.495

7.1. Experiment 1: Accuracy of the GMEB. To test the accuracy and efficiency of496
the proposed dual subgradient approach, data sets are generated according to the each of two497
data models from Section 6. For each data collection, the GMEB center is approximated498
using the proposed method and the algorithm of Renard et al. [25], and the residual error499
is measured as the between the approximate centers and the true centers. For the first data500
set, " = 100 points are sampled from Gr(3, 10) using the asymmetrical nested ball model501
in Section 6.1 with neither of the proposed generalizations. That is, :0 = :1 = :2 = 3 so502
that all points are sampled from the same Grassmann manifold. "1 = 70 of the points come503
from the boundary of B1 (Z1) and "2 = 30 from the boundary of B0.125 (Z2). No points are504
sampled from the interior of either ball. Both algorithms are initialized using the extrinsic505
mean of the data [20,26], that is, , (0) = [1/100, 1/100, . . . , 1/100]) , and U(0) (3) is the dominant506

1Matlab code for the algorithms, data generation procedures, and numerical experiments in this manuscript is
available at https://sites.google.com/site/nicolasgillis/code.
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Fig. 4: Median distance to the groundtruth and cumulative time for the GMEB on Gr(3, 10)
of data generated with the asymmetrical nested ball model from Section 6.1 over 100 Monte
Carlo trials. The data consists of 100 points in Gr(3, 10). The proposed method is indicated
by the dashed purple line and the method of Renard et al. [25] is represented by the solid
turquoise line. The shaded regions span the extreme values.

3-dimensional eigenspace of
∑100
8=1 _

(0)
8
-
8
-)
8
. The groundtruth center is U∗ (3) = Z1.507

Figure 4a shows the median distance to the groundtruth over 100 Monte Carlo trials508
between the iterate with the lowest primal cost and the ground-truth center. Figure 4b shows509
the same median distance to the groundtruth relative to cumulative computation time for each510
algorithm. In both plots the proposed method is indicated by the dashed purple line and the511
method of [25] is represented by the solid turquoise line. The shaded regions denote the512
complete range of values across all trials. This is a setting in which all data points live on513
a single Grassmann manifold. Therefore the point-to-set distances reduce to the traditional514
Grassmannian distances and the technique of [25] is equivalent to that of [3].515

The proposed method clearly outperforms the existing technique in terms of accuracy516
relative to both iterations and computation time for this collection of data. However, the517
cumulative computation time is affected by many of the parameters in the experimental518
setup. Let % = max8{dim(X8)}. For the technique of [3, 25], the per iteration complexity is519
O

(
"%(=: + :2)

)
due to the " matrix products and subsequent thin SVDs. The proposed520

method computes these same " products and SVDs, but must additionally compute the521
compact SVD of a matrix of size = × "% in order to get the updated center. Assuming that522
= ≤ "% (as it is in all the experiments), the complexity of the proposed algorithm is then523
O

(
"%(=: + :2 + =2)

)
. There are an additional " SVDs for each back-tracking step taken,524

but those steps are infrequent and thus dominated by the other terms. From these complexities525
we can see that an increase in the ambient dimension, =, number of subspaces, " , or subspace526
dimension, %, would all lead to a relative decrease in the efficiency of the proposed method.527

In the second example we employ the data model from Section 6.2, with the inclusion528
of interior points and the generalization that the data points come from a disjoint union of529
Grassmannians, that is, they are subspaces of differing dimensions. Initially, "1 = 100 points530
are sampled from the boundary of B1 (Z1) on Gr(3, 15). An additional "2 = 100 points531
are selected from an arc on the boundary of the ball between two randomly selected points.532
Finally "3 = 100 points are selected uniformly at random from the interior of the ball. Each533
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Fig. 5: Median distance to the groundtruth and cumulative computation time for the GMEB
onGr(3, 15) of data generated with the nonuniform sampling model from Section 6.2 over 100
Monte Carlo trials. The data consists of 300 points in

∐
?∈P Gr(?, 15) for P = {3, 4, 5, 6}.

The proposed method is indicated by the dashed purple line and the method of Renard et
al. [25] is represented by the solid turquoise line. The shaded regions span the extreme values.

of the " = 300 points is then completed to a basis for a ?8-dimensional subspace where ?8 is534
randomly selected from the set P = {3, 4, 5, 6}. Both algorithms are again initialized using535
the extrinsic mean of the data on Gr(3, 15) where , (0) = [1/300, 1/300, . . . , 1/300]) , and U(0) (3)536

is the dominant 3-dimensional eigenspace of
∑300
8=1 _

(0)
8
-
8
-)
8
. Figure 5a shows the median537

distance to the groundtruth over 100 Monte Carlo trials between the iterate with the lowest538
primal cost and the ground-truth center, while Figure 5b shows the median error relative to539
cumulative computation time. The proposed method is indicated by the dashed purple line540
and the method of Renard et al. [25] is represented by the solid turquoise line. The shaded541
regions span the extreme values. The groundtruth center is U∗ (3) = Z1.542

As shown in Figure 5a, the proposedmethod achieves a higher accuracy in fewer iterations543
than [25]. However, the greater complexity of the proposed method means that the primal544
algorithm initially achieves a lower error, as shown in Figure 5b. The increased number of545
points in the data set and specifically in the support of the GMEB lead to a slower overall546
convergence for the proposed algorithm. This reduced efficiency would grow with the size of547
the data, however the subgradient technique is consistently achieves lower overall error given548
enough time. Moreover, the proposed method provides duality-gap optimality guarantees.549

One direction for future work is to combine the two methods to get the best of both550
worlds; fast initial estimates of the center and high accuracy solutions over time. Using551
U(C) (:) computed via C iterations of [25] as an estimate of the center, we can find dual-feasible552
variables that are non-zero only for points in the support set of the enclosing ball centered at553
U(C) (:). For example, let I = {8 : 3Gr(:,=) (U(C) (:),X8) = max8 3Gr(:,=) (U(C) (:),X8)}. Then554

let _ (0)
8
= 1/|I | for 8 ∈ I and _ (0)

8
= 0 otherwise, and proceed with the subgradient algorithm555

from this warm-start. An alternative initialization strategy is proposed in Section 7.2.556

7.2. Experiment 2: Faster convergence by initializing with previous solutions. To557
apply the order selection criteria in Section 5, the GMEB center must be computed for558
: = 1, . . . ,max8{dim(X8)}. The example in Section 5.1 demonstrates that the subspace at559
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(a) Results from 100 trials with the asymmetrical
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sampled from Gr(?8 , 10) with ?8 ∈ {4, 5, 6}.
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(b) Results from 100 trials with the nonuniform
samplingmodel where :∗ = 4 and" = 300 points
sampled from Gr(?8 , 10) with ?8 ∈ {4, 5, 6}.

Fig. 6: Number of iterations needed for the proposed subgradient algorithm to reach a
stationary point using a naive initialization, , (0) (: +1) = [1/" , 1/" , . . . , 1/"]) (light orange),
and a warm start, , (0) (: + 1) = ,∗ (:) (red) for two data sets.

the center of the minimum enclosing ball cannot be built in a greedy fashion, because the560
center U∗ (: − 1) ∈ Gr(: − 1, =) is not in general a subspace of the center U∗ (:) ∈ Gr(:, =).561
However, the solutions are often nearly nested. As a result, the vector, ,∗ (: −1), that provides562
the optimal value of the dual objective function for the problem on Gr(: − 1, =) can offer563
a good initialization for the dual subgradient algorithm used to find the GMEB center on564
Gr(:, =), significantly reducing the total computation time needed to identify the optimal565
dimension, :∗. In [36] the authors also used a warm-starting strategy on a similar problem to566
improve the efficiency of a rank-adaptive matrix optimization scheme. Their proposed method567
alternates between greedy rank increase and smooth Riemannian optimization on fixed-rank568
manifolds, and they show that the strategy significantly improves the number of iterations and569
computational time to convergence.570

The warm-start in this experiment is via the dual variables, but leads to a more efficient571
solution to the primal problem as well. Byway of a baseline comparison, simple initializations572
of , (0) (:) would be to randomly select the dual variables or to set all of the dual variables573
equal so that , (0) (:) = [1/" , . . . , 1/"]) . For these experiments the latter strategy is chosen.574
The initial iterate for the primal variable when the dual variables are all equal is then the575
uniformly weighted extrinsic mean of the data, that is, U(0) (:) is the dominant :-dimensional576

eigenspace of
∑"
8=1 _

(0)
8
-
8
-)
8
. On Gr(1, =), no warm-start initialization is possible because577

,∗ (0) is undefined, so the algorithm is run using only the naive initialization. For : =578
2, . . . ,max8{dim(X8)} Figure 6 illustrates the relative speed-up due to smart initialization by579
comparing the number of iterations needed to find a stationary point for different choices of580
the initial dual variable using each of the data models. Both data models are intentionally581
structured so that the extrinsic mean is not the center of the GMEB on Gr(:∗, =). The naive582
initialization is indicated by the light orange box-and-whisker plots, while the warm-start is583
denoted with red. The black dots mark the mean number of iterations and the solid line is the584
median.585

In Figure 6a the data has been generated using the asymmetrical nested ball model with586
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" = 50 points sampled from Gr(?8 , 10) for ?8 ∈ {4, 5, 6} and an optimal dimension of587
:∗ = 4. The warm start converged in less iterations than the naive initialization in 359 out588
of 500 possible trials. An experiment using data generated by sampling more densely from589
a randomly selected arc of a unit ball is displayed in Figure 6b. Here, " = 300 points were590
generated on Gr(?8 , 10) with ?8 ∈ {4, 5, 6} where :∗ = 4. In 415 out of 500 possible trials,591
the warm start converged in less iterations than the naive initialization.592

7.3. Experiment 3: Order-selection comparison. The previous experiments demon-593
strated the effectiveness of the proposed approach for computing the subspace at the center of594
the GMEB in a noise-free scenario. However the end-goal is to find a central subspace and595
the optimal size to best represent the common dimensions in a collection of data. Adding596
noise to the subspaces makes it difficult to identify how many common dimensions exist, thus597
the third experiment compares the ability of the proposed order-selection rule to identify the598
optimal dimension of the common subspace with that of the technique from Santamaria et599
al. [28] as the difficulty of the task varies.600

Inmanymachine learning applications, extracting a low-rank common subspace fromdata601
is a pre-processing task and the rank is selected with little care. Heuristic solutions often focus602
on different methods for locating include the elbow of the scree plot, that is, computing the603
SVD of the concatenated data sets, finding the the singular values that represent the significant604
information, and keeping the dimensions corresponding to these singular values. This can be605
done with a variety of techniques such as the L-method [27], which estimates the elbow as606
the intersection of the two lines that minimize the root mean-squared error of the projection607
of the points in the of the scree plot onto the lines, the method of [40], which maximizes the608
profile log-likelihood under an independence assumption, and even just visually inspecting609
the scree plot to identify the first significant change in the first derivative [34]. To justify the610
need for a more principled way of selecting a subspace dimension, we additionally compare611
to the elbow of the scree plot using the L-method, and expect it to provide bad results. In the612
experiments this technique is denoted “SVD.”613

Figure 7 shows a comparison of order-selection rules for " = 20 points generated using614
the asymmetrical nested ball model from Section 6.1 with both generalizations. The data has615
"1 = 10 points are sampled uniformly from the boundary ofB1 (Z1) ⊂ Gr(10, =) and"2 = 10616
points are sampled from the boundary of B.5 (Z2) ⊂ Gr(15, =). Each of the points is then617
completed to a basis for a point onGr(?8 , =) for ?8 ∈ {10, 11, . . . , 20} and = = 20, 30, . . . , 200.618
Zero-mean Gaussian noise is added to each basis to create noisy data sets. The signal-to-noise619
ratio (SNR) of the data is the total power of the signal divided by the total power of the620
noise. In order to have the same SNR for each subspace despite differing dimensions, the621
noise variance per component is scaled by the number of subspace dimensions. Since -8 is622
an orthonormal basis for X8 , the magnitude of each basis vector is 1. Thus the total power of623
signal subspace is :∗, and the SNR is computed as SNR = 10 log10 (:∗/f2

#
), where f2

#
is the624

total variance of the noise. In this example the order of the common subspace is :∗ = 10 and625
f2
#
= 1.259 meaning that the data has an SNR of 9dB.626
Figure 7a shows the percentage of 100 Monte Carlo trials for which the proposed order-627

selection rule (purple dashed line with triangle markers), the method of Santamaría et al. [28]628
(pink solid line with circle markers), the hybrid method (turquoise dotted line with square629
markers), and the elbow point of the SVD (orange dash-dotted line with circle markers)630
were able to correctly identify the optimal order of the common subspace relative to the631
ambient dimension. Figure 7b shows the mean selected order, averaged across all trials. We632
can see that when the ambient dimension is small, all methods other than the SVD tend to633
overestimate the order of the common subspace. This is a result of the noise dimensions634
being relatively close in the low-dimensional spaces. The dimension of Gr(:, =) is : (= − :),635
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Fig. 7: Order-selection accuracy and mean selected order relative to the ambient dimension
of the data from 100 Monte Carlo trials using the proposed order-selection rule (purple dashed
line with triangle markers), the method of Santamaría et al. [28] (pink solid line with circle
markers), the hybrid method (turquoise dotted line with square markers), and the elbow point
of the SVD (orange dash-dotted line with circle markers). The data consists 20 points from∐
?∈P Gr(?, =) for P = {10, 11, . . . , 20} and = = 20, 30, . . . , 200 with an SNR of 9 generated

according to the model in Section 6.1.

so for : ≈ max8{?8} ≈ = all samples are very similar regardless of the data model. As the636
ambient dimension grows and the randomly selected dimensions become further apart on637
average, the proposed method and the hybrid method correctly select the order with a high638
degree of accuracy. The proposed method achieves slightly lower accuracy and has less stable639
performance than the hybrid method because 2pen (:) can be significantly affected by even one640
subspace that is similar to U∗⊥ (:). However, this behavior is consistent with the assumption641
that every sample is valid and there are no outliers in the collection of data. As expected, [28]642
initially estimates the order as the dimension of the common subspace for the smaller ball and643
over-estimates the order as 15, while the two methods that rely on the minimum enclosing ball644
estimate the dimension of the common subspace for that support set. Predictably, the elbow645
point of the SVD has a very low accuracy regardless of the ambient dimension. In essence,646
this method is attempting to preserve all dimensions that are not pure noise.647

Figure 8 shows a comparison using data from the second model, a ball that is sampled648
more densely from a random arc. For some Z1 ∈ Gr(3, 100), "1 = 200 points are sampled649
uniformly from B0.5 (Z1) ⊂ Gr(3, 100) and "2 = 25 additional points are then sampled from650
a random arc on the same ball. No points were sampled from the interior of the ball. Each of651
these" = 225 subspaces is completed to basis for a point onGr(?8 , 100) for ?8 ∈ {3, 4, 5}, and652
zero-mean Gaussian noise is added to each basis to create noisy data sets. In this experiment,653
the ambient dimension is fixed and we allow the SNR to vary from −5dB to 10dB.654

With this data the optimal order of the common subspace is :∗ = 3 and center of the ball is655
U∗ (3) = Z1. Figure 8a shows the percentage of 100 Monte Carlo trials for which the proposed656
order-selection rule (purple dashed line with triangle markers), the method of Santamaría657
et al. [28] (pink solid line with circle markers), the hybrid method (turquoise dotted line658
with square markers), and the elbow point of the SVD (orange dash-dotted line with circle659
markers) were able to correctly identify the optimal order of the common subspace relative660
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Fig. 8: Order-selection accuracy and mean selected order relative to the signal-to-noise ratio
of the data (in dB) from 100 Monte Carlo trials using the proposed order-selection rule (purple
dashed line with triangle markers), the method of Santamaría et al. [28] (pink solid line with
circle markers), the hybrid method (turquoise dotted line with square markers), and the elbow
point of the SVD (orange dash-dotted line with circle markers). The data consists 225 points
from

∐
?∈P Gr(?, 100) for P = {3, 4, 5} generated according to the model in Section 6.2.

to the signal-to-noise ratio. Figure 8b shows the mean selected order in the same trials. This661
experiment demonstrates the behavior of the different rules when all of the points are in the662
support of the minimum enclosing ball on Gr(:∗, =). Each of the subspace averaging methods663
should theoretically select the same order in this experiment, because all of the points share664
the same number of dimensions and there is no ambiguity about the optimal solution. Thus665
even though the mean computed by [28] is not the same point as the center of the GMEB,666
they lead to the same estimated rank. We see that in this scenario, the behavior of the rules667
using ℓ∞-norm and the ℓ2-norm are similar with a sharp phase transition when the power of668
the signal and the power of the noise are almost equal, although the ℓ2-norm transitions to669
the correct order at a slightly higher noise power. This suggests that for situations where670
the data is free from outliers and the ℓ∞-mean is close to the ℓ2-mean, either technique will671
accurately estimate the number of common dimensions. The elbow point of the singular value672
decomposition fails to identify the common dimension in all trials.673

Finally, in Figure 9 we see the ability of each method to identify when there is no subspace674
common to a collection of points. This is a valuable test because estimating :∗ = 0 suggests675
that there is no information shared across all the data and that averaging the points is not676
an appropriate way to aggregate the information in the data. The data in this experiment677
consists of 50 subspaces chosen uniformly at random from Gr(?8 , =) for ?8 ∈ {3, 4, 5} for678
8 = 1, . . . , 10 with ambient dimensions = = 5, 6, . . . , 15, 20, 25, . . . , 40. The noise variance679
does not affect performance in this task because there is no signal so SNR undefined. In680
Figure 9a we see a similar phase transition to that of Figure 8. The hybrid method is able to681
achieve perfect accuracy for ambient dimensions greater than 10, while [28] and the proposed682
method transition shortly thereafter. The SVD fails every time, but that is to be expected in this683
scenario. The elbow point method computes two lines that minimize the residual for the scree684
plot, and chooses dimension as the index of the singular value just larger than the intersection685
of those lines. A line cannot be fit to zero points, so the method will not select :∗ = 0 or :∗ = =686
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Fig. 9: Order-selection accuracy and mean selected order relative to the ambient dimension
of the data when there is no common subspace. Results are from 100 Monte Carlo trials using
the proposed order-selection rule (purple dashed line with triangle markers), the method of
Santamaría et al. [28] (pink solid line with circle markers), the hybrid method (turquoise
dotted line with square markers), and the elbow point of the SVD (orange dash-dotted line
with circle markers). The data consists 50 points from

∐
?∈P Gr(?, =) for P = {3, 4, 5} and

= = 5, 6, . . . , 15, 20, 25, . . . , 40.

as a solution. However, in Figure 9b we see that the SVD is significantly overestimating the687
dimension of the (non-existent) common subspace, so the poor performance is not an issue of688
the method being unable to select 0 as the optimal dimension. When = is small the proposed689
algorithm incorrectly identifies a relationship between the subspaces, but as the ambient690
dimension grows the optimal order, :∗ = 0, is selected with increasing accuracy. As noted691
in discussion of Figure 7, the misidentifications in low dimensions are due to the minimum692
similarity between the points and U∗⊥ (:) being higher when : ≈ max8{?8} ≈ =.693

8. Conclusions. The recent trend of performing machine learning tasks on linear sub-694
space data has created a need for flexible subspace averages, ones that can be computed695
accurately and in a principled manner for subspaces of differing dimension. In response to696
this need, we have proposed an algorithm to find the ℓ∞-center of mass using a subgradient697
algorithm to solve the dual problem with respect to a point-to-set distance. We additionally698
proposed a flexible data generation model to create subspaces of differing dimensions with699
ground-truth for the GMEB that emulates realistic settings where an ℓ∞-average would be700
appropriate. On this synthetic data, the proposed algorithm provides estimates of the GMEB701
center with high accuracy. However, the high computational complexity means that an exist-702
ing primal method can provide low-accuracy solutions more quickly for large data sets. One703
direction for future expansion is to develop a core-set theory akin to that of [4] in order to es-704
timate the GMEB on a subset of the data with theoretical accuracy guarantees. A related area705
for further study is to develop an active-set approach for ℓ∞-averaging of mixed-dimensional706
subspaces, à la John [14]. Active-set methods also attempt to minimize the cost function707
over a subset of the data. However, the active-set approach looks for a subset of the data that708
solves the original problem exactly, whereas the core-set technique computes error bounds709
on the solution provided by any subset of a given size. One theoretical hurdle to achieving710
an active-set method is a theorem on the minimum number of points required to define a711
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Grassmannian ball given a fixed Grassmann manifold and subspaces of differing dimensions.712
Finally, we proposed a geometric order-fitting rule that estimates the best dimension for713

the common subspace. This rule fits the common dimensions of the subspaces in the support714
set of the minimum enclosing ball, which is appropriate for data where all subspace samples715
are assumed to be valid examples of the model of interest. We additionally implement a716
hybrid technique for estimating the dimension of the common subspace that modifies the717
order-selection rule of [28] for use with the ℓ∞-average. This hybrid method would not be718
possible for existing techniques that estimate the GMEB, because it uses the values of the719
dual variables as weights for an eigenvalue decomposition at each potential order. The hybrid720
approach outperforms the proposed technique and that of [28] when the ambient dimension721
is close to the subspace dimension of the data points.722

A high-accuracy estimate of the GMEB center combined with an order-selection rule for723
the number of common dimensions results in a powerful technique for detecting and estimating724
similarity in a collection of subspaces. We anticipate that many practical applications will725
arise in the form of distributed large-scale problems, where the subspace averaging can be726
used for aggregation, for example the sparse subspace clustering of [1].727
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Appendix A. GMEB dual subgradient algorithm.

Algorithm A.1 Algorithm to minimize Equation (3.8) with back-tracking line search

1: function GMEB(
{
X8

}"
8=1, :, 0, [, Z , V)

2: input: Data:
{
X8

}"
8=1, Rank: : , Step size parameter: 0, Stopping criteria: [, Step

size threshold: Z , Growth parameter: V
3: output: Weights: ,∗, Minimax center: U∗

4: C ← 0
5: , (C) ← [1/" , . . . , 1/"]) ∈ R" ⊲ , (C) ← ,∗ (: − 1) for warm-start
6: U(C) ← dominant : eigenvectors

( ∑"
8=1 _

(C)
8
-
8
-)
8

)
7: g(C) ← −

[
3Gr(:,=) (U(C) ,X1), 3Gr(:,=) (U(C) ,X2), . . . , 3Gr(:,=) (U(C) ,X" )

])
8: 5primal (U(C) ) ← min8=1,...," {−3Gr(:,=) (U(C) ,X8)} ⊲ Primal cost at iteration C
9: 5dual (, (C) ) ← , (C)) g(C) ⊲ Dual cost at iteration C
10: while 5dual (, (C) ) − 5primal (U(C) ) > [ and max

8=1,...,10
{ 5dual (, (C−8) ) − 5dual (, (C) )} > [ do

11: C ← C + 1
12: U (C) ← 0/√C
13: , (C) ← , (C−1) − U (C)g(C−1) , , (C) ← , (C )/‖, (C ) ‖1
14: U(C) ← dominant : eigenvectors

( ∑"
8=1 _

(C)
8

X
8
X)
8

)
15: g(C) ← −

[
3Gr(:,=) (U(C) ,X1), 3Gr(:,=) (U(C) ,X2), . . . , 3Gr(:,=) (U(C) ,X" )

])
16: Ũ (C) ← U (C)

17: ,̃ (C) ← , (C)

18: 5dual (,̃ (C) ) ← ,̃ (C)) g(C)

19: while 5dual (,̃ (C) ) > 5dual (, (C−1) ) and Ũ (C) > ZU (C) do ⊲ Back-tracking line search
20: 0 ← 0/2
21: Ũ (C) ← 0/√C
22: ,̃ (C) ← , (C−1) − Ũ (C)g(C−1) , ,̃ (C) ← ,̃ (C )/‖,̃ (C ) ‖1
23: Ũ(C) ← dominant : eigenvectors

( ∑"
8=1 _̃

(C)
8

X
8
X)
8

)
24: g̃(C) ← −

[
3Gr(:,=) (Ũ(C) ,X1), 3Gr(:,=) (Ũ(C) ,X2), . . . , 3Gr(:,=) (Ũ(C) ,X" )

])
25: 5dual (,̃ (C) ) ← ,̃ (C)) g̃(C)

26: if 5dual (,̃ (C) ) ≤ 5dual (, (C−1) ) then ⊲ Update variables if 5dual decreases
27: 0 ← V0

28: , (C) ← ,̃ (C)

29: U(C) ← Ũ(C)

30: g(C) ← g̃(C)

31: 5primal (U(C) ) ← min8=1,...," {−3Gr(:,=) (U(C) ,X8)}
32: 5dual (, (C) ) ← , (C)) g(C)

return ,(t) , U(C)
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